搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集体耗散诱导下里德堡原子气体的非平衡相变

张亚鹏 郑宇杰 汤婧雯 施帅 周艳丽 刘伟涛

引用本文:
Citation:

集体耗散诱导下里德堡原子气体的非平衡相变

张亚鹏, 郑宇杰, 汤婧雯, 施帅, 周艳丽, 刘伟涛

Nonequilibrium Phase Transitions in Rydberg Atom Gases with Collective Dissipation

ZHANG Yapeng, ZHENG Yujie, TANG Jingwen, SHI Shuai, ZHOU Yanli, LIU Weitao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文研究具有集体耗散的里德堡原子系统中的非平衡相变. 结合平均场理论与刘维尔谱分析, 发现集体耗散可诱导原子间关联,并引发一种新型双稳态: 系统或收敛于某不动点或保持自激周期性振荡, 区别于传统相互作用导致的双稳态. 结果表明刘维尔能谱方法在有限维系统中提取的非平衡相变特征与热力学极限下的平均场结果基本一致. 该研究不仅能解释里德堡原子实验中观测到的自激振荡现象, 还预言了新的相结构, 也验证了刘维尔能谱方法在量子多体研究中的有效性, 为探索耗散系统中的非平衡相变提供了理论框架.
    This work investigates nonequilibrium phase transitions in a Rydberg atomic system with collective dissipation.[15,16] By combining mean-field theory[26] and Liouvillian spectral analysis[2327,29,30], we reveal novel nonequilibrium phases induced by collective dissipation and compare the results from both approaches. Our findings demonstrate that collective dissipation not only generates interatomic correlations but also sustains persistent periodic oscillations[18,32] and a distinctive form of bistability, where the system may either evolve to a stationary state or sustain self-consistent oscillatory dynamics. This study highlights the rich nonequilibrium phenomena present in quantum many-body systems and provides an extensible spectral framework for exploring dissipative phases in Rydberg and related systems.Recent experiments[1013] have reported persistent oscillations in thermal Rydberg atomic ensembles, yet a theoretical consensus on their origin remains elusive. Motivated by these observations, we introduce a collective dissipation mechanism and employ both mean-field approximations and the Liouvillian spectrum method to systematically explore nonequilibrium phase transitions. Our results show that collective dissipation effectively induces interatomic correlations and sustains persistent periodic oscillations, whereas under the same parameters, independent dissipation leads the system to relax to a stationary state. Furthermore, the nonlinear effects arising from collective dissipation give rise to a novel type of bistability, in which the system can either converge to a fixed point or maintain self-consistent periodic oscillations. This mechanism is distinctly different from conventional bistability induced by Rydberg interactions, which involves two stationary states. Moreover, the Liouvillian spectral method, based on the quantum master equation, successfully captures features of nonequilibrium phase transitions even in finite-dimensional systems, and the results agree well with those obtained from mean-field approximation in the thermodynamic limit.Our work not only provides a theoretical explanation for recently observed oscillatory phenomena but also predicts novel bistable states and rich nonequilibrium phase structures. It further verifies the effectiveness of the Liouvillian spectral approach in studying quantum many-body systems, contributing significantly to the understanding of microscopic mechanisms underlying nonequilibrium phase transitions.
  • 图 1  原子能级结构. 黄色和灰色的实心小球分别表示处在里德堡态和基态的原子. 外界存在稳定的激光来驱动系统远离平衡态. 激光与单个原子耦合的拉比频率为Ω, 失谐量为Δ. V表示处在里德堡态的原子之间的相互作用强度, Γ表示原子系统集体耗散速率, γ表示原子的独立耗散速率

    Fig. 1.  Atomic energy level structure. The yellow and gray solid spheres represent atoms in the Rydberg state and the ground state, respectively. The atoms are driven by a laser with the Rabi frequency Ω and the detuning Δ. V represents the interaction strength between atoms in the Rydberg state. Γ is collective dissipation rate and γ is independent dissipation rate.

    图 2  稳态时系统的吸收性质 (a) 不考虑相互作用和集体耗散时系统的吸收谱($ V=0 $, $ \Gamma=0 $), 呈现单原子时的单峰结构. (b) 原子相互作用对光谱的影响($ V\ne0 $, $ \Gamma=0 $). 相互作用引起谱线发生不对称弯曲. 当相互作用足够强时, 系统出现一般意义下的双稳态(图中虚线对应不稳定的解). (c) 考虑集体耗散时的吸收谱($ V=0 $, $ \Gamma\ne0 $). 随着系统集体耗散速率的增加, 原子光谱逐渐展宽且出现对称的双峰结构. (d) 相互作用和集体耗散同时存在时的原子光谱(固定$ \Gamma/\gamma=3 $). 相互作用使双峰结构变得不对称. (b—d)图中对应的$ \Omega/(\gamma+\Gamma)=2 $. 这里的参数设置均以$ \gamma+\Gamma $为量纲, 下同

    Fig. 2.  Absorption properties of the system in the stationary state. (a) Absorption spectrum of the system without interactions and collective dissipation ($ V=0 $, $ \Gamma=0 $), showing a single-peak structure as in the single-atom case. (b) Effect of atomic interactions on the spectrum ($ V \ne 0 $, $ \Gamma=0 $). The interaction causes asymmetric bending of the spectral line. When the interaction is sufficiently strong, the system exhibits bistability (the dashed line corresponds to the unstable solution). (c) Absorption spectrum with collective dissipation ($ V=0 $, $ \Gamma \ne 0 $). As the collective dissipation rate increases, the atomic spectrum broadens and develops a symmetric two-peak structure. (d) Atomic spectrum when both interactions and collective dissipation are present (with fixed $ \Gamma/\gamma=3 $). The interactions cause the two-peak structure to become asymmetric. In (b–d), the corresponding value of $ \Omega/(\gamma+\Gamma) $ is 2. All parameters here are normalized by $ \gamma+\Gamma $, and the same applies hereafter.

    图 3  (a) 平均场近似下的相图. 单稳相(SP)表示系统终止于不动点, 即唯一的稳定状态. 特殊双稳相(SP/OSC)表示系统可终止于不动点, 亦可自洽维持周期性振荡. 周期性振荡相(OSC)表示系统稳定后仍然处于持续振荡. (b) $ V=3\Gamma $时, 系统在平均场近似下的稳态解$ \langle \sigma_{x, y, z}\rangle $随Ω的变化

    Fig. 3.  (a) Phase diagram under the mean-field approximation. The stationary state phase (SP) indicates that the system reaches a fixed point, i.e., a unique stationary state. The unique bistable phase (SP/OSC) indicates that the system may either converge to a fixed point or self-consistently sustain periodic oscillations. The oscillatory (OSC) indicates that the system sustains self-consistent periodic oscillations. (b) The stationary state solutions $ \langle \sigma_{x, y, z}\rangle $ as function of Ω for $ V = 3\Gamma $.

    图 4  三种不同相区间下, 系统的动力学轨迹 (a) SP相: $ \Omega=0.2\Gamma $, 不同初始态都会到达一个不随时间变化的稳态. (b) SP/OSC相: $ \Omega=1.5\Gamma $, 一部分初始态会形成周期性振荡, 而一部分初始态会到达稳态上. (c) OSC相: $ \Omega=4\Gamma $, 任意初始态均会形成周期性的振荡. 这里固定$ V=3\Gamma $

    Fig. 4.  Dynamical trajectories of the system under three different phase regimes. (a) SP phase: For $ \Omega = 0.2\Gamma $, trajectories from different initial states all converge to a time-independent stationary state. (b) SP/OSC phase: For $ \Omega = 1.5\Gamma $, some initial states evolve into periodic oscillations, while others converge to a stationary state. (c) OSC phase: For $ \Omega = 4\Gamma $, all initial states develop periodic oscillations. Here, we set $ V = 3\Gamma $.

    图 5  (a) 对有限维量子系统, 刘维尔能谱方法求解的$ \langle\sigma_z\rangle $稳态结果, 虚线为平均场近似的结果. (b) 刘维尔能谱的最慢模式本征值实部$ Re(\lambda_{1}) $随Ω的变化. 两图对应$ V=3\Gamma $

    Fig. 5.  (a) Steady-state expectation value $ \langle\sigma_z\rangle $ for a finite-dimensional quantum system, obtained via the Liouvillian spectral method. The dashed line shows the mean-field approximation result. (b) Real part of the slowest mode eigenvalue $ {\rm{Re}}(\lambda_{1}) $ of the Liouvillian spectrum as a function of Ω. Both panels are for $ V=3\Gamma $.

    图 6  不同相对应的参数下, 有限维的量子系统与平均场近似下的动力学演化 (a)和(b)分别表示处在在SP和OSC参数下系统的动力学演化. (c)和(d)是在相同的参数(SP/OSC)下, 不同的初始态对应的动力学演化

    Fig. 6.  Dynamical evolution of a finite-dimensional quantum system compared to its mean-field approximation under varying parameters. Panels (a) and (b) depict the system's dynamics in the Single-Particle (SP) and Oscillatory (OSC) parameter regimes, respectively. Panels (c) and (d) present the corresponding dynamical evolution for different initial states, utilizing the same SP and OSC parameters as in (a) and (b), respectively.

    图 7  刘维尔能谱结构图 (a)和(b)分别对应$ \Omega=0.2\Gamma $(SP相), $ 1\Gamma $(SP/OSC相)的刘维尔能谱($ N=20 $). (c)和(d)为相应的能谱$ \lambda_{i}(i=0, \cdots9) $实部绝对值随粒子数的变化, 这里以$ \left | Re(\lambda_{i}) \right | $升序排列. 可见在SP相(a, c), 能谱并不会随着系统维度而收敛至零, 而在OSC相(b, d)存在的参数区间, 能谱随N的增大而逐渐收敛至零, 即热力学极限下的能隙闭合

    Fig. 7.  (a) and (b) show the Liouville spectra for $ \Omega=0.2\Gamma $ and $ \Omega=1\Gamma $, respectively, in a system with $ N=20 $. The spectral gap in (b) is significantly smaller than that in (a). (c-d) Finite size scaling for the real part of the Liouvillian eigenvalues in the SP phase(c) and SP/OSC phase (d). The index i labels the eigenvalues. The Liouvillian eigenvalues $ \lambda_i $ are ordered as a function of their real part ($ |Re(\lambda_i)|\le |Re(\lambda_{i+1})| $ and $ i=0 $ has zero real part). In SP phase, convergence of the Liouvillian gap to zero does not occur with increasing N, while in OSC phase they scale to zero as system size increase.

    Baidu
  • [1]

    Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Physical Review Letters 111 103605Google Scholar

    [2]

    Witthaut D, Wimberger S, Burioni R, Timme M 2017 Nature Communications 8 14829Google Scholar

    [3]

    Biondi M, Blatter G, Türeci H E, Schmidt S 2017 Physical Review A 96 043809Google Scholar

    [4]

    Carmichael H J 2015 Phys. Rev. X 5 031028

    [5]

    Chan C K, Lee T E, Gopalakrishnan S 2015 Phys. Rev. A 91 051601Google Scholar

    [6]

    Wilczek F 2012 Physical Review Letters 109 160401Google Scholar

    [7]

    Greilich A, Kopteva N E, Korenev V L, Haude P A, Bayer M 2025 Nature Communications 16 2936Google Scholar

    [8]

    Liu T, Ou J Y, MacDonald K F, Zheludev N I 2023 Nature Physics 19 986Google Scholar

    [9]

    Wang Z, Gao R, Wu X, Buča B, Mølmer K, You L, Yang F 2025 arXiv 2503.20761

    [10]

    Wu X, Wang Z, Yang F, Gao R, Liang C, Tey M K, Li X, Pohl T, You L 2024 Nature Physics 20 1389Google Scholar

    [11]

    Ding D, Bai Z, Liu Z, Shi B, Guo G, Li W, Adams C S 2024 Science Advances 10 eadl5893Google Scholar

    [12]

    Wadenpfuhl K, Adams C S 2023 Physical Review Letters 131 143002Google Scholar

    [13]

    Jiao Y, Jiang W, Zhang Y, Bai J, He Y, Shen H, Zhao J, Jia S 2024 arXiv: 2402.13112

    [14]

    Lee T E, Häffner H, Cross M C 2012 Physical Review Letters 108 023602Google Scholar

    [15]

    Lee T E, Chan C K, Yelin S F 2014 Phys. Rev. A 90 052109Google Scholar

    [16]

    Dicke R H 1954 Physical Review 93 99Google Scholar

    [17]

    Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J, Thompson J K 2012 Nature 484 78Google Scholar

    [18]

    Ferioli G, Glicenstein A, Ferrier-Barbut I, Browaeys A 2023 Nature Physics 19 1345Google Scholar

    [19]

    Lei M, Fukumori R, Rochman J, Zhu B, Endres M, Choi J, Faraon A 2023 Nature 617 271Google Scholar

    [20]

    Gross M, Haroche S 1982 Physics Reports 93 301Google Scholar

    [21]

    Prazeres L F D, Souza L D S, Iemini F 2021 Physical Review B 103 184308Google Scholar

    [22]

    Piccitto G, Wauters M, Nori F, Shammah N 2021 Physical Review B 104

    [23]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Physical Review Letters 116 240404Google Scholar

    [24]

    Žnidarič M 2015 Physical Review E 92 042143Google Scholar

    [25]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Physical Review A 98 042118Google Scholar

    [26]

    Huybrechts D, Minganti F, Nori F, Wouters M, Shammah N 2020 Phys. Rev. B 101 214302Google Scholar

    [27]

    Mori T, Shirai T 2020 Physical Review Letters 125 230604Google Scholar

    [28]

    Casteels W, Fazio R, Ciuti C 2017 Physical Review A 95

    [29]

    Zhang J, Xia G, Wu C W, Chen T, Zhang Q, Xie Y, Su W B, Wu W, Qiu C W, Chen P X, Li W, Jing H, Zhou Y L 2025 Nature Communications 16 301Google Scholar

    [30]

    Zhou Y L, Yu X D, Wu C W, Li X Q, Zhang J, Li W, Chen P X 2023 Phys. Rev. Res. 5 043036Google Scholar

    [31]

    Macieszczak K, Zhou Y L, Hofferberth S, Garrahan J P, Li W, Lesanovsky I 2017 Phys. Rev. A 96 043860Google Scholar

    [32]

    Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M, Fazio R 2018 Physical Review Letters 121 035301Google Scholar

    [33]

    Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P, Hofferberth S 2020 Phys. Rev. Research 2 043339Google Scholar

    [34]

    Bonifacio R, Lugiato L A 1975 Phys. Rev. A 11 1507Google Scholar

    [35]

    Lindblad G 1976 Communications in Mathematical Physics 48 119Google Scholar

    [36]

    Gorini V, Kossakowski A, Sudarshan E C G 1976 Journal of Mathematical Physics 17 821Google Scholar

    [37]

    Li Y, Wang C, Tang Y, Liu Y C 2024 Phys. Rev. Lett. 132 183803Google Scholar

    [38]

    Weimer H, Kshetrimayum A, Orús R 2021 Rev. Mod. Phys. 93 015008Google Scholar

    [39]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [40]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [41]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602Google Scholar

    [42]

    Burgstahler S 1983 The Two-Year College Mathematics Journal 14 203Google Scholar

    [43]

    Lee T E, Häffner H, Cross M C 2011 Phys. Rev. A 84 031402Google Scholar

    [44]

    Ikeda K 1979 Optics Communications 30 257Google Scholar

    [45]

    Gibbs H M, McCall S L, Venkatesan T N C 1976 Physical Review Letters 36 1135Google Scholar

    [46]

    Wang H, Goorskey D J, Xiao M 2001 Physical Review A 65 011801Google Scholar

    [47]

    Marcuzzi M, Levi E, Diehl S, Garrahan J P, Lesanovsky I 2014 Physical Review Letters 113 210401Google Scholar

    [48]

    Šibalić N, Wade C G, Adams C S, Weatherill K J, Pohl T 2016 Physical Review A 94 011401Google Scholar

    [49]

    Zhang L, Fei Y, Cao T, Cao Y, Xu Q, Chen S 2013 Physical Review A 87 053805Google Scholar

    [50]

    Takemura N, Takiguchi M, Sumikura H, Kuramochi E, Shinya A, Notomi M 2020 Physical Review A 102 011501Google Scholar

    [51]

    Shetewy A E, Catuneanu M T, He M, Jamshidi K 2024 Scientific Reports 14 23823Google Scholar

    [52]

    Arakelyan S M 1987 Soviet Physics Uspekhi 30 1041Google Scholar

    [53]

    Jiles D C, Atherton D L 1986 Journal of Magnetism and Magnetic Materials 61 48Google Scholar

    [54]

    Zhang J, Li E Z, Wang Y J, Liu B, Zhang L H, Zhang Z Y, Shao S Y, Li Q, Chen H C, Ma Y, Han T Y, Wang Q F, Nan J D, Yin Y M, Zhu D Y, Guo G C, Ding D S, Shi B S 2025 Nature Communications 16 3511Google Scholar

    [55]

    Breuer H P, Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press

  • [1] 肖冬萍, 陈苓, 阎晟, 王浩, 许显立, 潘峰, 温东阳, 张淮清. 交/直流电场对里德堡原子Stark效应的调控作用及工频强场测量研究.  , doi: 10.7498/aps.74.20250677
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , doi: 10.7498/aps.72.20222030
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , doi: 10.7498/aps.72.20222059
    [4] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究.  , doi: 10.7498/aps.72.20222091
    [5] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究.  , doi: 10.7498/aps.71.20211284
    [6] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展.  , doi: 10.7498/aps.69.20200649
    [7] 刘瑞芬, 惠治鑫, 熊科诏, 曾春华. 表面催化反应模型中关联噪声诱导非平衡相变.  , doi: 10.7498/aps.67.20180250
    [8] 申雅君, 郭永峰, 袭蓓. 关联高斯与非高斯噪声激励的FHN神经元系统的稳态分析.  , doi: 10.7498/aps.65.120501
    [9] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究.  , doi: 10.7498/aps.64.180502
    [10] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构.  , doi: 10.7498/aps.64.093201
    [11] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量.  , doi: 10.7498/aps.64.160702
    [12] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算.  , doi: 10.7498/aps.61.163202
    [13] 郭永峰, 徐 伟. 关联白噪声驱动的具有时间延迟的Logistic系统.  , doi: 10.7498/aps.57.6081
    [14] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态.  , doi: 10.7498/aps.55.221
    [15] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究.  , doi: 10.7498/aps.51.326
    [16] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在.  , doi: 10.7498/aps.50.942
    [17] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构.  , doi: 10.7498/aps.38.481
    [18] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率.  , doi: 10.7498/aps.38.1717
    [19] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应.  , doi: 10.7498/aps.37.983
    [20] 周光召, 苏肇冰. 非平衡耗散系统定常态的Goldstone模.  , doi: 10.7498/aps.29.618
计量
  • 文章访问数:  308
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回
Baidu
map