搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳离子穿过氢等离子体的电荷态演化理论研究

张崇瑞 何文亮 曹世权 颉录有 董晨钟

引用本文:
Citation:

碳离子穿过氢等离子体的电荷态演化理论研究

张崇瑞, 何文亮, 曹世权, 颉录有, 董晨钟

Theoretical study on charge-state evolution of carbon ions passing through hydrogen plasma

ZHANG Chongrui, HE Wenliang, CAO Shiquan, XIE Luyou, DONG Chenzhong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文基于截面模型系统研究了碳离子与氢等离子体相互作用的电荷态演化行为. 首先探究了在碳离子入射能为$1{\text{ keV/u—}}100{\text{ MeV/u}}$、氢等离子体的电子温度为$k{T_{\text{e}}} = 1{\text{—}}1000{\text{ eV}}$范围内引入“shift”麦克斯韦速率分布对双电子复合速率系数影响的规律, 首次给出该体系下的速率系数数据. 在此基础上具体求解了在炮弹碳离子的能量为$0.5{\text{ MeV/u}}$、等离子体自由电子温度为$ k{T}_{\text{e}}=3和\text{ }8\text{ eV} $、电子密度为${N_{\text{e}}} = {10^{18}}{\text{—}}{10^{20}}{\text{ cm}^{- 3}}$的情况下包含各种电离及复合过程的平衡速率方程, 给出了碳离子穿过氢等离子体的非平衡和平衡电荷态丰度随等离子体厚度的演化关系, 揭示了等离子体状态(温度、密度), 炮弹离子能量及初始电荷态对炮弹离子电荷态演化的调控机制. 进一步, 通过对比碳离子在氢等离子体与中性气体(氢气)中的动力学行为差异, 阐明了等离子体环境对离子电荷交换的独特影响. 本研究将对高能量密度物理领域中离子与等离子体相互作用的动力学演化及能量输运特性的研究具有重要参考作用.
    In this paper, the charge state evolution behavior of carbon ions interacting with hydrogen plasma is systematically investigated based on a cross-sectional model. First, the influence of introducing a "shifted" Maxwellian velocity distribution on the dielectronic recombination rate coefficients is investigated within the range of carbon ion incident energies from 1 keV/u to 100 MeV/u and hydrogen plasma electron temperatures of $k{T_{\text{e}}} = 1{\text{—}}1000{\text{ eV}}$. The rate coefficient data for this system are provided. On this basis, this research specifically solves the equilibrium rate equations by taking into account various ionization and recombination processes for projectile carbon ions with an energy of ${0}{\text{.5 MeV/u}}$, plasma electron temperatures of $k{T_{\text{e}}} = 3{\text{ eV}}$ and ${\text{8 eV}}$, and electron densities ranging from ${1}{{0}^{{18}}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$ to ${1}{{0}^{{20}}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$. The results show that the abundance of both non-equilibrium and equilibrium charge states of carbon ions passing through hydrogen plasma varies with plasma thickness, revealing how plasma conditions such as temperature and density, along with projectile ion energy and initial charge states, influence the evolution of the ion charge states. Furthermore, a comparison of the dynamic behaviors of carbon ions in hydrogen plasma and neutral gas (hydrogen) shows that the unique effects of the plasma environment on ion charge exchange are elucidated. The mean equilibrium charge state of projectile ions exhibits a positive correlation with electron temperature and a negative correlation with electron density. It is particularly important that the calculated equilibrium charge states in hydrogen gas targets are notably lower than those in plasma environments. As the initial charge state of projectile ions approaches its equilibrium value, the equilibrium thicknesses for all charge states demonstrate a decreasing trend, accompanied by a corresponding reduction in the mean equilibrium thickness. This phenomenon is consistently verified in both plasma and gas targets, with the mean equilibrium thickness values in gas targets being significantly smaller than those in plasma environments. Most importantly, when the initial charge state of projectile ions exceeds the equilibrium value, these ions display more pronounced energy loss characteristics in non-equilibrium regions. This study will provides important references forinvestigating the dynamic evolution and energy transport characteristics of ion-plasma interactions in the field of high-energy-density physics.
  • 图 1  FLYCHK代码得到的在氢等离子体中氢原子密度随电子密度和电子温度的变化

    Fig. 1.  Variation of hydrogen atom density in a hydrogen plasma as a function of electron density and electron temperature, obtained using the FLYCHK code.

    图 2  $80{\text{ keV/u}}$的C离子入射“shift”DR速率系数随自由电子温度的变化 (a) ${{\text{C}}^{ {{1 + }}}}$离子速率系数; (b) ${{\text{C}}^{ {{2 + }}}}$离子速率系数; (c) ${{\text{C}}^{ {{3 + }}}}$离子速率系数; (d) ${{\text{C}}^{ {{4 + }}}}$离子速率系数

    Fig. 2.  Variation of the “shift” DR rate coefficients with free electron temperature for 80 keV/u C ions: (a) Rate coefficients of ${{\text{C}}^{ {{1 + }}}}$ ions; (b) rate coefficients of ${{\text{C}}^{ {{2 + }}}}$ ions; (c)rate coefficients of ${{\text{C}}^{ {{3 + }}}}$ ions; (d) rate coefficients of ${{\text{C}}^{ {{4 + }}}}$ ions.

    图 3  等离子体自由电子温度为$10{\text{ eV}}$条件下, (a) C1+, (b) C2+, (c) C3+和(d) C4+离子在入射能为${1} {\text{ keV/u}}{\text{—}}{100} {\text{ MeV/u}}$时, 不同芯激发序列以及总的“shift”DR速率系数变化

    Fig. 3.  At a plasma electron temperature of 10 eV, the variation of both individual core-excitation sequences and the total “shift” DR rate coefficients for (a) C1+, (b) C2+, (c) C3+ and (d) C4+ ions over an incident energy of ${1} {\text{ keV/u}}{\text{—}}{100} {\text{ MeV/u}}$.

    图 4  等离子体电子密度$ {N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}} $及不同电子温度下碳离子与氢等离子体相互作用过程1)—2)的电离和复合速率随电荷态$q$的变化 (a) 电子温度$ k{T_{\text{e}}} = 3{\text{ eV}} $, 氢原子的密度${N_{\text{H}}} = 2.57 \times {10^{16}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$; (b) 电子温度$ k{T_{\text{e}}} = 8{\text{ eV}} $, 氢原子的密度${N_{\text{H}}} = 7.65 \times {10^{15}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$

    Fig. 4.  Dependence of ionization and recombination rates (Processes 1)—7)) on the charge state $q$ for carbon ions interacting with hydrogen plasma at a fixed electron density $ {N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}} $under different electron temperatures: (a) for electron temperature $ k{T_{\text{e}}} = 3{\text{ eV}} $with hydrogen atomic density ${N_{\text{H}}} = 2.57 \times {10^{16}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$ (b) for electron temperature $ k{T_{\text{e}}} = 8{\text{ eV}} $with hydrogen atomic density ${N_{\text{H}}} = 7.65 \times {10^{15}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$.

    图 5  等离子体电子温度为$ k{T_{\text{e}}} = 10{\text{ eV}} $, 及不同电子密度下碳离子与氢等离子体相互作用过程1)—7)的电离和复合速率随电荷态$q$的变化 (a) 电子密度${N_{\text{e}}} = {10^{19}}{\text{ c}}{{\text{m}}^{ - 3}}$, 氢原子的密度$ {N_{\text{H}}} = 1.54 \times {10^{17}}{\text{ c}}{{\text{m}}^{{{ - 3}}}} $; (b) 电子密度${N_{\text{e}}} = {10^{20}}{\text{ c}}{{\text{m}}^{ - 3}}$, 氢原子的密度$ {N_{\text{H}}} = 3.62 \times {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}} $

    Fig. 5.  Dependence of ionization and recombination rates (processes 1)—7)) on the charge state $q$ for carbon ions interacting with hydrogen plasma at a fixed electron temperature $ k{T_{\text{e}}} = 10{\text{ eV}} $under different electron densities: (a) Electron density ${N_{\text{e}}} = {10^{19}}{\text{ c}}{{\text{m}}^{ - 3}}$ with hydrogen atomic density $ {N_{\text{H}}} = 1.54 \times {10^{17}}{\text{ c}}{{\text{m}}^{{{ - 3}}}} $; (b) electron density ${N_{\text{e}}} = {10^{20}}{\text{ c}}{{\text{m}}^{ - 3}}$with hydrogen atomic density $ {N_{\text{H}}} = 3.62 \times {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}} $.

    图 6  能量为$0.5{\text{ MeV/u}}$ 的${{\text{C}}^{{{1 + }}}}$穿过不同参数下氢等离子体和氢气的电荷态分布 (a) 电子密度${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, 电子温度$k{T_{\text{e}}} = 3{\text{ }}{\text{eV}}$; (b) 电子密度${N_e} = {10^{19}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, 电子温度$k{T_{\text{e}}} = 10{\text{ }}{\text{eV}}$; (c) ${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, 电子温度$k{T_{\text{e}}} = 8{\text{ }}{\text{eV}}$; (d) 电子密度${N_{\text{e}}} = {10^{20}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, 电子温度$k{T_{\text{e}}} = 10{\text{ }}{\text{eV}}$; (e) 氢气靶

    Fig. 6.  Charge state distribution of ${{\text{C}}^{{{1 + }}}}$with an energy of $0.5{\text{ MeV/u}}$passing through hydrogen plasma and hydrogen gas under different parameters: (a) Electron density ${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, electron temperature $k{T_{\text{e}}} = 3{\text{ }}{\text{eV}}$; (b) electron density ${N_{\text{e}}} = {10^{19}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, electron temperature $k{T_{\text{e}}} = 10{\text{ }}{\text{eV}}$; (c) electron density ${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, electron temperature $k{T_{\text{e}}} = 8{\text{ }}{\text{eV}}$; (d) electron density ${N_{\text{e}}} = {10^{20}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, electron temperature $k{T_{\text{e}}} = 10{\text{ }}{\text{eV}}$; (e) hydrogen gas target.

    图 7  能量为$0.5{\text{ MeV/u}}$的${{\text{C}}^{{{1 + }}}}$穿过不同参数下氢等离子体和氢气的平衡电荷态分布 (a) 电子密度${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, 电子温度$k{T_{\text{e}}} = 3{\text{ }}{\text{eV}}$和$8{\text{ eV}}$以及氢气靶中的平衡电荷态分布; (b) 电子温度$k{T_{\text{e}}} = 10{\text{ }}{\text{eV}}$, 电子密度${N_{\text{e}}} = {10^{19}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$和${10^{20}}{\text{ c}}{{\text{m}}^{ - 3}}$以及氢气靶中的平衡电荷态分布

    Fig. 7.  Equilibrium charge state distribution of ${{\text{C}}^{{{1 + }}}}$ with an energy of $0.5{\text{ MeV/u}}$passing through hydrogen plasma and hydrogen gas under different parameters: (a) Equilibrium charge state distribution for electron density ${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$, electron temperature $k{T_{\text{e}}} = 3{\text{ }}{\text{eV}}$ and $8{\text{ eV}}$ as well as hydrogen gas target; (b) equilibrium charge state distribution for electron temperature $k{T_{\text{e}}} = 10{\text{ }}{\text{eV}}$, electron density ${N_{\text{e}}} = {10^{19}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$ and $ {10^{20}}{\text{ c}}{{\text{m}}^{{{ - 3}}}} $as well as hydrogen gas target.

    图 8  不同初始电荷态${q_0}$对平衡厚度$ {x_{{\text{eq}}}}(q) $和平均平衡厚度$ {\overline x _{{\text{eq}}}} $的影响 (a) 与电子温度$ k{T_{\text{e}}} = 8{\text{ eV}} $, 电子密度为${N_{\text{e}}} = $$ {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$的氢等离子体作用; (b) 与氢气靶作用

    Fig. 8.  Influences of different initial charge states ${q_0}$ on the equlibrium thickness $ {x_{{\text{eq}}}}(q) $ and the mean eqilibrium thickness $ {\overline x _{{\text{eq}}}} $ (a) interaction with hydrogen plasma at an electron temperature $ k{T_{\text{e}}} = 8{\text{ eV}} $ and electron density ${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$; (b) interaction with a hydrogen gas target.

    图 9  不同的初始电荷态${q_0}$下, 平均电荷态随穿透深度的变化 (a) 与电子温度$ k{T_{\text{e}}} = 8{\text{ eV}} $, 电子密度为${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$的氢等离子体作用; (b) 与氢气靶作用

    Fig. 9.  Variation of the mean charge state with penetration depth under different initial charge states ${q_0}$: (a) Interaction with hydrogen plasma at an electron temperature $ k{T_{\text{e}}} = 8{\text{ eV}} $ and electron density ${N_{\text{e}}} = {10^{18}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$; (b) interaction with a hydrogen gas target.

    Baidu
  • [1]

    Bohr N 1913 Phil. Mag. 25 10Google Scholar

    [2]

    Bohr N 1915 Phil. Mag. 30 581Google Scholar

    [3]

    Rutherford E 1911 Philos. Mag. 21 669Google Scholar

    [4]

    Bethe H A 1930 Ann. Phys. 5 325

    [5]

    Bloch F 1933 Ann. Phys. 16 287

    [6]

    Olsen J N, Mehlhorn T A, Maenchen J, Johnson D J 1985 J. Appl. Phys. 58 2958Google Scholar

    [7]

    Young F C, Mosher D, Stephanakis S J, Goldstein Shyke A 1982 Phys. Rev. Lett. 49 549Google Scholar

    [8]

    Mehlhorn D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990 Phys. Rev. A 42 2313Google Scholar

    [9]

    Koshkarev D G 2002 Laser Part. Beams 20 595Google Scholar

    [10]

    Dietrich K G, Hoffmann D H H, Boggasch E, Jacoby J, Wahl H, Elfers M, Haas C R, Dubenkov V P, Golubev A A 1992 Phys. Rev. Lett. 69 3623Google Scholar

    [11]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch C, Maynard G 1990 Laser Part. Beam 8 575Google Scholar

    [12]

    Lindhard J, Winther A 1964 Mat. -Fys. Medd. K. Dan. Vidensk. Selsk 34 1

    [13]

    Andersen H H, Ziegler J F 1977 Stopping and Ranges of Ions in Matter (Elmsford, NY: Pergamon

    [14]

    Sigmund P 2006 Particle Penetration and Radiation Effects (Berlin: Springer

    [15]

    Nardi E, Zinamon Z 1982 Phys. Rev. Lett. 49 1251Google Scholar

    [16]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 2015Google Scholar

    [17]

    Scheidenberger C, Stoehlker T, Meyerhof W E, Geissel H, Mokler P H, Blank B 1998 Nucl. Instrum. Methods Phys. Res. B 142 441Google Scholar

    [18]

    Rozet J P, Stephan C, Vernhet D 1996 Nucl. Instr. Methods B 107 67Google Scholar

    [19]

    Trubnikov B 1965 Rev. Mod. Plasma Phys. 1 105

    [20]

    Skupsky S 1977 Phys. Rev. A 16 727Google Scholar

    [21]

    Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar

    [22]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [23]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extrem 1 89Google Scholar

    [24]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [25]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro E, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar

    [26]

    Sharkov B Y, Hoffmann D H H, Golubev A A, Zhao Y T 2016 Matter Radiat. Extrem 1 28Google Scholar

    [27]

    程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 112011Google Scholar

    Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci. Sin. -Phys. Mech. Astron. 50 112011Google Scholar

    [28]

    Tolstikhina I Y, Imai M, Winckler N, Shevelko V P 2018 Basic Atomic Interactions of Accelerated Heavy Ions in Matter (Berlin: Springer-Verlag GmbH

    [29]

    Tolstikhina I Y, Andreev S N, Vainshtein L A, Shevelko V P 2020 J. Quant. Spectrosc. Radiat. Transfer 246 106944Google Scholar

    [30]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R, Haas R, Kunze H, Bimbot R, Gardes D, Rivet M F, Deutsch C, Fleurier C 1990 Nucl. Instrum. Methods Phys. Res. Sect. A 278 52

    [31]

    Gardés D, Servajean A, Jubica B, Fleurier C, Hong D, Deutsch C, Maynard D 1992 Phys. Rev. A 46 5101Google Scholar

    [32]

    Gardés D, Bimbot R, Rivet M F, Servajean A, Fleurier C, Hong D, Deutsch C, Maynard G 1992 Particle Accelerators 37 361

    [33]

    Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud R, Cukier M, Deutsch C, Maynard G 1994 Phys. Rev. E 49 1545Google Scholar

    [34]

    Jacoby J, Hoffmann D H H, Laux W, Muller R W, Wahl H, Weyrich K, Boggasch E, Heimrich B, Stockl C, Wetzler C, Miyamoto C 1995 Phys. Rev. Lett. 74 1550Google Scholar

    [35]

    Kojima M, Mitomo M, Sasaki T, Hasegawa J, Ogawa M 2002 Laser Part. Beams 20 475Google Scholar

    [36]

    Skobelev N K, Kalpakchieva R, Astabatyan R A, Vincour J, Kulko A A, Lobastov S P, Lukyanov S M, Markaryan E R, Maslov V A, Sobolev Y H, Ugryumov V Y 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 227 471Google Scholar

    [37]

    Frank A, Blazevicé, Bagnoud V, Basko M M, Borner M, Cayzac W, Kraus D, Hessling T, Hoffmann D H H, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz A, Roth M 2013 Phys. Rev. Lett. 110 115001Google Scholar

    [38]

    Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013 Phys. Rev. Lett. 110 135003Google Scholar

    [39]

    Nardi E, Zinamon Z 1982 Phys. Rev. Lett. 49 1251Google Scholar

    [40]

    Peter T, Arnold R, Meyer-ter-Vehn J 1986 Phys. Rev. Lett. 57 1859Google Scholar

    [41]

    Frank A, Blažević, A, Grande P L, Harres K, Heßling T, Hoffmann D H H, Knobloch-Maas R, Kuznetsov P G, Nürnberg F, Pelka A, Schaumann G, Schiwietz G, Schökel A, Schollmeier M, Schumacher D, Schütrumpf J, Vatulin V V, Vinokurov O A, Roth M 2010 Phys. Rev. E 81 115001

    [42]

    Ortner A, Frank A, Blažević A, Roth M 2015 Phys. Rev. E 91 023104Google Scholar

    [43]

    Cayzac W, Bagnoud V, Basko M M, Blažević A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz A, Vorberger J, Roth M 2015 Phys. Rev. E 92 053109Google Scholar

    [44]

    Betz H 1972 Rev. Mod. Phys. 44 465Google Scholar

    [45]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 23 82Google Scholar

    [46]

    Gus’kov S Yu, Zmitrenko N V, Ⅱ’ in D V, Levkovskii A A, Rozanov V B, Sherman V E 2010 Plasma Phys. Rep 35 709

    [47]

    Morales R, Barriga Carrasco M D, Casas D 2017 Phys. Plasmas 24 042703Google Scholar

    [48]

    Shevelko V P, Andreev S N, Tolstikhina I Y 2021 Nucl. Instrum. Methods Phys. Res. Sect. B 502 37Google Scholar

    [49]

    Tolstikhina I Y, Shevelko V P 2023 Matter Radiat. Extrem 8 23

    [50]

    Novikov N V, Teplova Ya A 2021 J. Surf. Invest.: X-ray, Synch. Neut. Tech 15 248

    [51]

    Betz H D 1983 Heavy Ion Charge States (New York: Academic Press

    [52]

    Gryziński M 1965 Phys. Rev 138 A336Google Scholar

    [53]

    Lotz W 1967 Z. Phys 206 205Google Scholar

    [54]

    Lotz W 1968 Z. Phys 216 241Google Scholar

    [55]

    Peter T 1990 Laser Part. Beams 8 643Google Scholar

    [56]

    Zel'dovich Ya B, Raizer Yu P, Hayes W D, Probstein R F, Landshoff R 1966 Physics of Shock Waves and High- Temperature Hydrodynamic Phenomena (New York: Academic Press

    [57]

    May R M 1964 Phys. Rev 136 A669Google Scholar

    [58]

    Eichler J, Chan F T 1979 Phys. Rev. A 20 104Google Scholar

    [59]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Density Phys 1 3Google Scholar

    [60]

    Gu M F 2008 Can. J. Phys 86 675

  • [1] 程渝, 任洁茹, 马步博, 刘云, 赵子乾, 魏文青, Dieter H. H.Hoffmann, 邓志刚, 齐伟, 周维民, 程锐, 李忠良, 宋磊, 李源, 赵永涛. 激光加速低能碳离子束在CHO泡沫中的电荷转移过程.  , doi: 10.7498/aps.74.20250634
    [2] 梁雅琼, 梁贵云. 基于ACE观测数据的太阳风电荷交换X射线辐射因子.  , doi: 10.7498/aps.74.20241603
    [3] 黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文. 基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究.  , doi: 10.7498/aps.74.20241589
    [4] 邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文. 重离子储存环CSRe上类钠Kr25+离子的双电子复合精密谱学实验研究.  , doi: 10.7498/aps.73.20240211
    [5] 赵小安, 徐升华, 周宏伟, 孙祉伟. 电解质浓度对胶体粒子表面有效电荷的影响.  , doi: 10.7498/aps.70.20201472
    [6] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , doi: 10.7498/aps.70.20201685
    [7] 王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰. 带电胶体粒子弹性有效电荷测量的理论改进.  , doi: 10.7498/aps.66.066102
    [8] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线.  , doi: 10.7498/aps.65.027901
    [9] 符彦飙, 王旭东, 苏茂根, 董晨钟. Au34+离子双电子复合过程的理论研究.  , doi: 10.7498/aps.65.033401
    [10] 杨建会, 范强, 张建平. 类氖等电子系列离子基态的双电子复合速率系数研究.  , doi: 10.7498/aps.61.193101
    [11] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究.  , doi: 10.7498/aps.59.7815
    [12] 师应龙, 董晨钟, 张登红, 符彦飙. 高离化态Hg和U离子的双电子复合过程的理论研究.  , doi: 10.7498/aps.57.88
    [13] 张登红, 董晨钟, 颉录有, 丁晓斌, 符彦飙. 类氦离子的KLL双电子复合过程的相对论理论研究.  , doi: 10.7498/aps.55.112
    [14] 董晨钟, 符彦飙. 高离化态Cu18+离子的双电子复合及共振转移激发过程的理论研究.  , doi: 10.7498/aps.55.107
    [15] 杨朝文, 缪竞威, 王广林, 刘晓东, 师勉恭. MeV氢微团簇离子与固体介质的电荷交换.  , doi: 10.7498/aps.55.5810
    [16] 杨百方, 缪竞威, 杨朝文, 师勉恭, 唐阿友, 刘晓东. H3+团簇离子与固体相互作用.  , doi: 10.7498/aps.51.55
    [17] 易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波. Au激光等离子体的双电子复合速率系数.  , doi: 10.7498/aps.51.2740
    [18] 盛勇, 蒋刚, 朱正和. 类氢类氦类锂镁离子双电子复合的旁观电子角动量研究.  , doi: 10.7498/aps.51.501
    [19] 焦荣珍, 程新路, 杨向东, 朱俊. 类镍Dy38+离子的双电子复合速率研究.  , doi: 10.7498/aps.51.1755
    [20] 王友年, 马腾才, 宫野. 重离子束在热靶中的电子阻止本领与有效电荷数.  , doi: 10.7498/aps.42.631
计量
  • 文章访问数:  318
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-22
  • 修回日期:  2025-06-25
  • 上网日期:  2025-07-24

/

返回文章
返回
Baidu
map