-
本文基于第一性原理方法研究了非晶态二氧化硅中性氧空位缺陷及其与氢原子的反应机理. 结果显示, 非晶态二氧化硅中存在5种稳定中性氧空位缺陷构型, 相应的缺陷形成能与缺陷硅原子间距呈现显著正相关关系. 其中, $ {\mathrm{V}}_{\mathrm{D}} $构型因形成能最低可能是辐照或制备过程中的主要缺陷, $ {\mathrm{V}}_{\mathrm{F}} $和$ {\mathrm{V}}_{\mathrm{B}} $构型的费米接触与$ {\mathrm{E}}_{\gamma }'$中心相近, 而$ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $和$ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $构型因电子成对存在导致费米接触为零. 氢原子与中性氧空位缺陷通过形成Si—H键或硅羟基两种钝化方式可产生两类共7种中性氢化氧空位缺陷. 电子定域化函数与EPR模拟分析发现, $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}}\mathrm{和}{\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}}\mathrm{构}\mathrm{型} $与$ {\mathrm{E}}_{\gamma }' $中心的EPR参数高度接近, 表明氢钝化过程可能干扰$ {E}' $中心的识别. $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $构型中硅羟基的生成可为氧化层和界面处水分子的形成提供理论依据. 研究获得了氢诱导缺陷跨网格迁移以及生成硅羟基的路径, 并揭示了氢原子具有钝化原始缺陷和诱发次生缺陷的双重作用. 这些发现可为双极型器件低剂量率辐射损伤增强效应提供微观机理解释.Amorphous silica (a-SiO2) with excellent insulating properties, uniform disordered structure, and good thermal stability, is the preferred material for field oxide layers, gate insulation layers and passivation layers in many semiconductor devices. However, in space environments, the oxygen vacancies generated by high-energy particle radiation and their interaction with hydrogen atoms in a-SiO2 can lead to enhanced low-dose-rate sensitivity, potentially causing threshold voltage to shift and leakage current to increase in semiconductor devices. These seriously threaten the operation safety of spacecraft, and the exploration of related reaction mechanisms is crucial. The neutral oxygen vacancies in amorphous silica and their reaction mechanism with hydrogen atoms are investigated using first-principles calculations. Five types of neutral oxygen vacancies are identified, namely $ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}} $, $ {\mathrm{V}}_{\mathrm{F}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ and $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configurations. A significant positive correlation is observed between the defect formation energy and the distance between two defective silicon atoms. Due to the lowest defect formation energy, the $ {\mathrm{V}}_{\mathrm{D}} $ configuration may become the main type of defect in irradiation or fabrication.$ {\mathrm{V}}_{\mathrm{F}} $ and $ {\mathrm{V}}_{\mathrm{B}} $ configurations show that Fermi contacts are comparable to those of $ {\mathrm{E}}_{\mathrm{\gamma }}' $ centers. The presence of electron pairs leads to zero fermi contacts in $ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ and $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configurations. Previous studies have often focused more on the reaction between oxygen vacancies and hydrogen atoms at the middle-sites of oxygen vacancies. And, a key characteristic of the disordered a-SiO2 structure is that this method ignores the structure: the reaction may extend to the neighboring networks and occur at the side-sites of oxygen defects. For a full understanding of actual reactions, both the middle-sites and side-sites are considered for hydrogen atoms in present investigations. The research shows that hydrogen atoms passivate neutral oxygen vacancies through two different mechanisms: the formation of Si-H bonds and the generation of silanol groups. These processes generate two types of neutral hydrogenated oxygen vacancies, $ {\mathrm{V}}^{\mathrm{H}} $ and $ {\mathrm{V}}^{\mathrm{O}\mathrm{H}} $ configurations, which can be further divided into seven different configurations based on the orientation of dangling bonds and Si-H bonds. By combining the analyses of ELF maps and EPR simulations, it is demonstrated that $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}} $ and $ {\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}} $ configurations have EPR parameters comparable to those of $ {\mathrm{E}}_{\mathrm{\gamma }}' $ center, indicating that hydrogen passivation processes may interfere with the identification of $ {\mathrm{E}}' $ center. The formation of silanol group in $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $ configuration provides theoretical bases for explaining water molecules formation within oxide layers and at interfaces. This study elucidates the pathways of hydrogen-induced cross-network migration and silanol group formation, jointly revealing the dual role of hydrogen in passivating defects and inducing secondary defects. A microscopic explanation for the increased sensitivity to low dose rates in bipolar devices is derived from these findings.
-
Keywords:
- neutral oxygen vacancy /
- hydrogen atom /
- passivation /
- first-principles
-
表 1 五种中性氧空位缺陷的结构参数
Table 1. Structural parameters of five types of neutral oxygen vacancies.
种类 数量 平均$ {D}_{\mathrm{S}\mathrm{i}1-\mathrm{S}\mathrm{i}2} $
/Å平均Si—O
键长/Å平均O—Si—O
键角/(°)Si1 Si2 Si1 Si2 $ {\mathrm{V}}_{\mathrm{D}} $ 24 2.42 1.66 1.66 106.95 107.34 $ {\mathrm{V}}_{\mathrm{F}} $ 7 4.19 1.66 1.66 108.52 108.91 $ {\mathrm{V}}_{\mathrm{B}} $ 14 4.81 1.66 1.66 109.31 108.19 $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ 2 5.32 1.80 1.60 96.27 114.07 $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ 1 3.53 1.71 1.66 99.67 111.63 表 2 中性氧空位缺陷和中性氢化氧空位缺陷的平均费米接触和g因子
Table 2. Average Fermi contacts and g values of neutral oxygen vacancies and neutral hydrogen-passivated oxygen vacancies.
缺陷构型 费米接触/mT g1 g2 g3 Si1 Si2 $ {\mathrm{V}}_{\mathrm{B}} $ –38.10 –40.69 2.0006 1.9988 1.9981 $ {\mathrm{V}}_{\mathrm{F}} $ –41.79 –42.95 2.0005 1.9986 1.9979 $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}} $ –39.29 –0.00 2.0017 2.0006 2.0002 $ {\mathrm{V}}_{\mathrm{B}\mathrm{F}}^{\mathrm{H}} $ –0.03 –45.07 2.0017 2.0002 1.9998 $ {\mathrm{V}}_{\mathrm{F}\mathrm{B}}^{\mathrm{H}} $ –44.27 –0.12 2.0017 2.0003 2.0000 $ {\mathrm{V}}_{\mathrm{F}\mathrm{F}}^{\mathrm{H}} $ –16.55 –41.14 2.0014 2.0002 1.9997 $ {\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}} $ –0.01 –0.27 (–41.72 a) 2.0016 2.0004 2.0001 $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}}^{\mathrm{H}} $ –22.89 –0.02 2.0021 2.0020 2.0005 $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $ –43.75 –0.60 2.0016 2.0005 1.9998 注: a 表示Si4费米接触. -
[1] Kajihara K, Miura T, Kamioka H, Aiba A, Uramoto M, Morimoto Y, Hirano M, Skuja L, Hosono H 2008 J. Non-Cryst. Solids 354 224
Google Scholar
[2] Füssel W, Schmidt M, Flietner H 1992 Nucl. Instrum. Meth. B 65 238
Google Scholar
[3] Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2289
Google Scholar
[4] Yue Y L, Wang J W, Zhang Y Q, Song Y, Zuo X 2018 Physica B 533 5
Google Scholar
[5] Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Pantelides S T 2015 IEEE Trans. Nucl. Sci. 62 2169
Google Scholar
[6] Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342
Google Scholar
[7] Pershenkov V S, Petrov A S, Bakerenkov A S, Ulimov V N, Felytsyn V A, Rodin A S, Belyakov V V, Telets V A, Shurenkov V V 2017 Microelectron. Reliab. 76–77 703
[8] Zhou H, Song Y, Liu Y, Zhang Y 2020 Eur. Phys. J. Plus 135 909
Google Scholar
[9] Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Trans. Nucl. Sci. 55 3009
Google Scholar
[10] Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901
Google Scholar
[11] Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650
Google Scholar
[12] Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D, Galloway K F 1998 IEEE Trans. Nucl. Sci. 45 2339
Google Scholar
[13] Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871
Google Scholar
[14] Messina F, Cannas M 2007 J. Phys. Chem. C 111 6663
Google Scholar
[15] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169
Google Scholar
[16] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913
Google Scholar
[17] Morana A, Cannas M, Girard S, Boukenter A, Vaccaro L, Périsse J, Macé J R, Ouerdane Y, Boscaino R 2013 Opt. Mater. Express 3 1769
Google Scholar
[18] Tomashuk A L, Zabezhailov M O 2011 J. Appl. Phys. 109 083103
Google Scholar
[19] Saito K, Ito M, Ikushima A J, Funahashi S, Imamura K 2004 J. Non-Cryst. Solids 347 289
Google Scholar
[20] Weeks R A 1956 J. Appl. Phys. 27 1376
Google Scholar
[21] Nelson C M, Weeks R A 1960 J. Am. Ceram. Soc. 43 396
Google Scholar
[22] Weeks R A, Nelson C M 1960 J. Am. Ceram. Soc. 43 399
Google Scholar
[23] Griscom D L 1984 Nucl. Instrum. Meth. B 1 481
Google Scholar
[24] Griscom D L 1985 OPL 61 213
[25] Boero M, Oshiyama A, Silvestrelli P L 2004 Mod. Phys. Lett. B 18 707
Google Scholar
[26] Boero M, Oshiyama A, Silvestrelli P L 2003 Phys. Rev. Lett. 91 206401
Google Scholar
[27] Wang Y, Zhao Y, Chen Z, Jia Z, Tong D, Nie S, Han Z 2024 J. Chem. Phys. 161 034705
Google Scholar
[28] Yue Y, Song Y, Zuo X 2017 AIP Adv. 7 015309
Google Scholar
[29] Chavez J R, Karna S P, Vanheusden K, Brothers C P, Pugh R D, Singaraju B K, Warren W L, Devine R A B 1997 IEEE Trans. Nucl. Sci. 44 1799
Google Scholar
[30] Mukhopadhyay S, Sushko P V, Mashkov V A, Shluger A L 2005 J. Phys.: Condens. Matter 17 1311
Google Scholar
[31] Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772
Google Scholar
[32] Blöchl P E 2000 Phys. Rev. B 62 6158
Google Scholar
[33] Skuja L 1998 J. Non-Cryst. Solids 239 16
Google Scholar
[34] Pantelides S T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2262
Google Scholar
[35] Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2289
Google Scholar
[36] McLean F B 1980 IEEE Trans. Nucl. Sci. 27 1651
Google Scholar
[37] Saks N S, Klein R B, Griscom D L 1988 IEEE Trans. Nucl. Sci. 35 1234
Google Scholar
[38] El-Sayed A M, Wimmer Y, Goes W, Grasser T, Afanas’ev V V, Shluger A L 2015 Phys. Rev. B 92 014107
Google Scholar
[39] El-Sayed A M, Watkins M B, Grasser T, Afanas’ev V V, Shluger A L 2015 Microelectron. Eng. 147 141
Google Scholar
[40] Rivera A, van Veen A, Schut H, de Nijs J M M, Balk P 2002 Solid-State Electron. 46 1775
Google Scholar
[41] Kato K 2012 Phys. Rev. B 85 085307
Google Scholar
[42] Yao P, Song Y, Zuo X 2021 Superlatt. Microstruct. 156 106962
Google Scholar
[43] Hong Z C, Yao P, Liu Y, Zuo X 2022 Chin. Phys. B 31 057101
Google Scholar
[44] VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J 2005 Comput. Phys. Commun. 167 103
Google Scholar
[45] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[46] VandeVondele J, Hutter J 2007 J. Chem. Phys. 127 114105
Google Scholar
[47] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703
Google Scholar
[48] BROYDEN C G 1970 IMA J. Appl. Math. 6 222
Google Scholar
[49] Fletcher R 1970 Comput. J. 13 317
Google Scholar
[50] Goldfarb D 1970 Math. Comp. 24 23
Google Scholar
[51] Shanno D F 1970 Math. Comp. 24 647
Google Scholar
[52] Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901
Google Scholar
[53] Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397
Google Scholar
[54] 卢天, 陈飞武 2011 物理化学学报 27 2786
Google Scholar
Lu T, Chen F W 2011 Acta Phys. Chem. Sin. 27 2786
Google Scholar
[55] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253
Google Scholar
[56] Pickard C J, Mauri F 2002 Phys. Rev. Lett. 88 086403
Google Scholar
[57] Yazyev O V, Tavernelli I, Helm L, Röthlisberger U 2005 Phys. Rev. B 71 115110
Google Scholar
[58] Bahramy M S, Sluiter M H F, Kawazoe Y 2007 Phys. Rev. B 76 035124
Google Scholar
[59] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
Google Scholar
[60] Charpentier T 2011 Solid State Nucl. Mag. 40 1
Google Scholar
[61] Pickard C J, Mauri F 2001 Phys. Rev. B 63 245101
Google Scholar
[62] Le Roux S, Petkov V 2010 J. Appl. Cryst. 43 181
Google Scholar
[63] Goetzke K, Klein H J 1991 J. Non-Cryst. Solids 127 215
Google Scholar
[64] Yuan X, Cormack A N 2002 Comput. Mater. Sci. 24 343
Google Scholar
[65] Van Ginhoven R M, Jónsson H, Corrales L R 2005 Phys. Rev. B 71 024208
Google Scholar
[66] Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203
Google Scholar
[67] Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Richard N 2014 Phys. Rev. B 90 014108
Google Scholar
[68] Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M, Schrimpf R D 2007 Microelectron. Reliab. 47 903
Google Scholar
计量
- 文章访问数: 235
- PDF下载量: 8
- 被引次数: 0