搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶态二氧化硅中性氧空位缺陷的氢钝化机理与反应路径

王禹齐 赵耀林 喻晨曦 张俊

引用本文:
Citation:

非晶态二氧化硅中性氧空位缺陷的氢钝化机理与反应路径

王禹齐, 赵耀林, 喻晨曦, 张俊

Hydrogen passivation mechanism and reaction pathways of neutral oxygen vacancies in amorphous silica

WANG Yuqi, ZHAO Yaolin, YU Chenxi, ZHANG Jun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文基于第一性原理方法研究了非晶态二氧化硅中性氧空位缺陷及其与氢原子的反应机理. 结果显示, 非晶态二氧化硅中存在5种稳定中性氧空位缺陷构型, 相应的缺陷形成能与缺陷硅原子间距呈现显著正相关关系. 其中, $ {\mathrm{V}}_{\mathrm{D}} $构型因形成能最低可能是辐照或制备过程中的主要缺陷, $ {\mathrm{V}}_{\mathrm{F}} $和$ {\mathrm{V}}_{\mathrm{B}} $构型的费米接触与$ {\mathrm{E}}_{\gamma }'$中心相近, 而$ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $和$ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $构型因电子成对存在导致费米接触为零. 氢原子与中性氧空位缺陷通过形成Si—H键或硅羟基两种钝化方式可产生两类共7种中性氢化氧空位缺陷. 电子定域化函数与EPR模拟分析发现, $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}}\mathrm{和}{\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}}\mathrm{构}\mathrm{型} $与$ {\mathrm{E}}_{\gamma }' $中心的EPR参数高度接近, 表明氢钝化过程可能干扰$ {E}' $中心的识别. $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $构型中硅羟基的生成可为氧化层和界面处水分子的形成提供理论依据. 研究获得了氢诱导缺陷跨网格迁移以及生成硅羟基的路径, 并揭示了氢原子具有钝化原始缺陷和诱发次生缺陷的双重作用. 这些发现可为双极型器件低剂量率辐射损伤增强效应提供微观机理解释.
    Amorphous silica (a-SiO2) with excellent insulating properties, uniform disordered structure, and good thermal stability, is the preferred material for field oxide layers, gate insulation layers and passivation layers in many semiconductor devices. However, in space environments, the oxygen vacancies generated by high-energy particle radiation and their interaction with hydrogen atoms in a-SiO2 can lead to enhanced low-dose-rate sensitivity, potentially causing threshold voltage to shift and leakage current to increase in semiconductor devices. These seriously threaten the operation safety of spacecraft, and the exploration of related reaction mechanisms is crucial. The neutral oxygen vacancies in amorphous silica and their reaction mechanism with hydrogen atoms are investigated using first-principles calculations. Five types of neutral oxygen vacancies are identified, namely $ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}} $, $ {\mathrm{V}}_{\mathrm{F}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ and $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configurations. A significant positive correlation is observed between the defect formation energy and the distance between two defective silicon atoms. Due to the lowest defect formation energy, the $ {\mathrm{V}}_{\mathrm{D}} $ configuration may become the main type of defect in irradiation or fabrication.$ {\mathrm{V}}_{\mathrm{F}} $ and $ {\mathrm{V}}_{\mathrm{B}} $ configurations show that Fermi contacts are comparable to those of $ {\mathrm{E}}_{\mathrm{\gamma }}' $ centers. The presence of electron pairs leads to zero fermi contacts in $ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ and $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configurations. Previous studies have often focused more on the reaction between oxygen vacancies and hydrogen atoms at the middle-sites of oxygen vacancies. And, a key characteristic of the disordered a-SiO2 structure is that this method ignores the structure: the reaction may extend to the neighboring networks and occur at the side-sites of oxygen defects. For a full understanding of actual reactions, both the middle-sites and side-sites are considered for hydrogen atoms in present investigations. The research shows that hydrogen atoms passivate neutral oxygen vacancies through two different mechanisms: the formation of Si-H bonds and the generation of silanol groups. These processes generate two types of neutral hydrogenated oxygen vacancies, $ {\mathrm{V}}^{\mathrm{H}} $ and $ {\mathrm{V}}^{\mathrm{O}\mathrm{H}} $ configurations, which can be further divided into seven different configurations based on the orientation of dangling bonds and Si-H bonds. By combining the analyses of ELF maps and EPR simulations, it is demonstrated that $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}} $ and $ {\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}} $ configurations have EPR parameters comparable to those of $ {\mathrm{E}}_{\mathrm{\gamma }}' $ center, indicating that hydrogen passivation processes may interfere with the identification of $ {\mathrm{E}}' $ center. The formation of silanol group in $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $ configuration provides theoretical bases for explaining water molecules formation within oxide layers and at interfaces. This study elucidates the pathways of hydrogen-induced cross-network migration and silanol group formation, jointly revealing the dual role of hydrogen in passivating defects and inducing secondary defects. A microscopic explanation for the increased sensitivity to low dose rates in bipolar devices is derived from these findings.
  • 图 1  (a) 无缺陷a-SiO2模型[27](红色为氧原子、黄色硅原子); (b) Si—O键长示意图; (c) a-SiO2键角分布

    Fig. 1.  (a) Model of defect-free a-SiO2 [27](red spheres, oxygen atoms; yellow spheres, silicon atoms); (b) schematic diagram of the Si—O bond length; (c) bond angle distribution in a-SiO2.

    图 2  a-SiO2中5种中性氧空位缺陷的典型结构(红色为氧原子、黄色硅原子)和ELF图

    Fig. 2.  Typical configurations and ELF maps of five types of neutral oxygen vacancies in a-SiO2 (red spheres, oxygen atoms; yellow spheres, silicon atoms).

    图 3  中性氧空位缺陷的缺陷形成能

    Fig. 3.  Defect formation energy of neutral oxygen vacancies.

    图 4  a-SiO2中7种中性氢化氧空位缺陷的典型结构(红色为氧原子、黄色硅原子、白色为氢原子)

    Fig. 4.  Seven typical configurations of neutral hydrogen-passivated oxygen vacancies in a-SiO2 (red spheres, oxygen atoms; yellow spheres, silicon atoms; white spheres, hydrogen atoms).

    图 5  a-SiO2中7种中性氢化氧空位缺陷的ELF图

    Fig. 5.  ELF maps of seven neutral hydrogen-passivated oxygen vacancies in a-SiO2.

    图 6  (a) $ {\mathrm{V}}_{\mathrm{D}} $和(b) $ {\mathrm{V}}_{\mathrm{B}} $构型与氢原子的反应路径和能量曲线

    Fig. 6.  Reaction pathways and energy curves of (a) $ {\mathrm{V}}_{\mathrm{D}} $ and (b) $ {\mathrm{V}}_{\mathrm{B}} $ configurations with hydrogen atoms.

    图 7  (a) $ {\mathrm{V}}_{\mathrm{F}} $和(b) $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $构型与氢原子的反应路径和能量曲线

    Fig. 7.  Reaction pathways and energy curves of (a) $ {\mathrm{V}}_{\mathrm{F}} $ and (b) $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ configurations with hydrogen atoms.

    图 8  $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $构型与氢原子的反应路径和能量曲线

    Fig. 8.  Reaction pathway and energy curve of $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configuration with a hydrogen atom.

    表 1  五种中性氧空位缺陷的结构参数

    Table 1.  Structural parameters of five types of neutral oxygen vacancies.

    种类 数量 平均$ {D}_{\mathrm{S}\mathrm{i}1-\mathrm{S}\mathrm{i}2} $
    平均Si—O
    键长/Å
    平均O—Si—O
    键角/(°)
    Si1 Si2 Si1 Si2
    $ {\mathrm{V}}_{\mathrm{D}} $ 24 2.42 1.66 1.66 106.95 107.34
    $ {\mathrm{V}}_{\mathrm{F}} $ 7 4.19 1.66 1.66 108.52 108.91
    $ {\mathrm{V}}_{\mathrm{B}} $ 14 4.81 1.66 1.66 109.31 108.19
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ 2 5.32 1.80 1.60 96.27 114.07
    $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ 1 3.53 1.71 1.66 99.67 111.63
    下载: 导出CSV

    表 2  中性氧空位缺陷和中性氢化氧空位缺陷的平均费米接触和g因子

    Table 2.  Average Fermi contacts and g values of neutral oxygen vacancies and neutral hydrogen-passivated oxygen vacancies.

    缺陷构型 费米接触/mT g1 g2 g3
    Si1 Si2
    $ {\mathrm{V}}_{\mathrm{B}} $ –38.10 –40.69 2.0006 1.9988 1.9981
    $ {\mathrm{V}}_{\mathrm{F}} $ –41.79 –42.95 2.0005 1.9986 1.9979
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}} $ –39.29 –0.00 2.0017 2.0006 2.0002
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{F}}^{\mathrm{H}} $ –0.03 –45.07 2.0017 2.0002 1.9998
    $ {\mathrm{V}}_{\mathrm{F}\mathrm{B}}^{\mathrm{H}} $ –44.27 –0.12 2.0017 2.0003 2.0000
    $ {\mathrm{V}}_{\mathrm{F}\mathrm{F}}^{\mathrm{H}} $ –16.55 –41.14 2.0014 2.0002 1.9997
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}} $ –0.01 –0.27 (–41.72 a) 2.0016 2.0004 2.0001
    $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}}^{\mathrm{H}} $ –22.89 –0.02 2.0021 2.0020 2.0005
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $ –43.75 –0.60 2.0016 2.0005 1.9998
    注: a 表示Si4费米接触.
    下载: 导出CSV
    Baidu
  • [1]

    Kajihara K, Miura T, Kamioka H, Aiba A, Uramoto M, Morimoto Y, Hirano M, Skuja L, Hosono H 2008 J. Non-Cryst. Solids 354 224Google Scholar

    [2]

    Füssel W, Schmidt M, Flietner H 1992 Nucl. Instrum. Meth. B 65 238Google Scholar

    [3]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2289Google Scholar

    [4]

    Yue Y L, Wang J W, Zhang Y Q, Song Y, Zuo X 2018 Physica B 533 5Google Scholar

    [5]

    Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Pantelides S T 2015 IEEE Trans. Nucl. Sci. 62 2169Google Scholar

    [6]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar

    [7]

    Pershenkov V S, Petrov A S, Bakerenkov A S, Ulimov V N, Felytsyn V A, Rodin A S, Belyakov V V, Telets V A, Shurenkov V V 2017 Microelectron. Reliab. 76–77 703

    [8]

    Zhou H, Song Y, Liu Y, Zhang Y 2020 Eur. Phys. J. Plus 135 909Google Scholar

    [9]

    Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Trans. Nucl. Sci. 55 3009Google Scholar

    [10]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar

    [11]

    Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650Google Scholar

    [12]

    Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D, Galloway K F 1998 IEEE Trans. Nucl. Sci. 45 2339Google Scholar

    [13]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871Google Scholar

    [14]

    Messina F, Cannas M 2007 J. Phys. Chem. C 111 6663Google Scholar

    [15]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

    [16]

    Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913Google Scholar

    [17]

    Morana A, Cannas M, Girard S, Boukenter A, Vaccaro L, Périsse J, Macé J R, Ouerdane Y, Boscaino R 2013 Opt. Mater. Express 3 1769Google Scholar

    [18]

    Tomashuk A L, Zabezhailov M O 2011 J. Appl. Phys. 109 083103Google Scholar

    [19]

    Saito K, Ito M, Ikushima A J, Funahashi S, Imamura K 2004 J. Non-Cryst. Solids 347 289Google Scholar

    [20]

    Weeks R A 1956 J. Appl. Phys. 27 1376Google Scholar

    [21]

    Nelson C M, Weeks R A 1960 J. Am. Ceram. Soc. 43 396Google Scholar

    [22]

    Weeks R A, Nelson C M 1960 J. Am. Ceram. Soc. 43 399Google Scholar

    [23]

    Griscom D L 1984 Nucl. Instrum. Meth. B 1 481Google Scholar

    [24]

    Griscom D L 1985 OPL 61 213

    [25]

    Boero M, Oshiyama A, Silvestrelli P L 2004 Mod. Phys. Lett. B 18 707Google Scholar

    [26]

    Boero M, Oshiyama A, Silvestrelli P L 2003 Phys. Rev. Lett. 91 206401Google Scholar

    [27]

    Wang Y, Zhao Y, Chen Z, Jia Z, Tong D, Nie S, Han Z 2024 J. Chem. Phys. 161 034705Google Scholar

    [28]

    Yue Y, Song Y, Zuo X 2017 AIP Adv. 7 015309Google Scholar

    [29]

    Chavez J R, Karna S P, Vanheusden K, Brothers C P, Pugh R D, Singaraju B K, Warren W L, Devine R A B 1997 IEEE Trans. Nucl. Sci. 44 1799Google Scholar

    [30]

    Mukhopadhyay S, Sushko P V, Mashkov V A, Shluger A L 2005 J. Phys.: Condens. Matter 17 1311Google Scholar

    [31]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar

    [32]

    Blöchl P E 2000 Phys. Rev. B 62 6158Google Scholar

    [33]

    Skuja L 1998 J. Non-Cryst. Solids 239 16Google Scholar

    [34]

    Pantelides S T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2262Google Scholar

    [35]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2289Google Scholar

    [36]

    McLean F B 1980 IEEE Trans. Nucl. Sci. 27 1651Google Scholar

    [37]

    Saks N S, Klein R B, Griscom D L 1988 IEEE Trans. Nucl. Sci. 35 1234Google Scholar

    [38]

    El-Sayed A M, Wimmer Y, Goes W, Grasser T, Afanas’ev V V, Shluger A L 2015 Phys. Rev. B 92 014107Google Scholar

    [39]

    El-Sayed A M, Watkins M B, Grasser T, Afanas’ev V V, Shluger A L 2015 Microelectron. Eng. 147 141Google Scholar

    [40]

    Rivera A, van Veen A, Schut H, de Nijs J M M, Balk P 2002 Solid-State Electron. 46 1775Google Scholar

    [41]

    Kato K 2012 Phys. Rev. B 85 085307Google Scholar

    [42]

    Yao P, Song Y, Zuo X 2021 Superlatt. Microstruct. 156 106962Google Scholar

    [43]

    Hong Z C, Yao P, Liu Y, Zuo X 2022 Chin. Phys. B 31 057101Google Scholar

    [44]

    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J 2005 Comput. Phys. Commun. 167 103Google Scholar

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    VandeVondele J, Hutter J 2007 J. Chem. Phys. 127 114105Google Scholar

    [47]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703Google Scholar

    [48]

    BROYDEN C G 1970 IMA J. Appl. Math. 6 222Google Scholar

    [49]

    Fletcher R 1970 Comput. J. 13 317Google Scholar

    [50]

    Goldfarb D 1970 Math. Comp. 24 23Google Scholar

    [51]

    Shanno D F 1970 Math. Comp. 24 647Google Scholar

    [52]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [53]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [54]

    卢天, 陈飞武 2011 物理化学学报 27 2786Google Scholar

    Lu T, Chen F W 2011 Acta Phys. Chem. Sin. 27 2786Google Scholar

    [55]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [56]

    Pickard C J, Mauri F 2002 Phys. Rev. Lett. 88 086403Google Scholar

    [57]

    Yazyev O V, Tavernelli I, Helm L, Röthlisberger U 2005 Phys. Rev. B 71 115110Google Scholar

    [58]

    Bahramy M S, Sluiter M H F, Kawazoe Y 2007 Phys. Rev. B 76 035124Google Scholar

    [59]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502Google Scholar

    [60]

    Charpentier T 2011 Solid State Nucl. Mag. 40 1Google Scholar

    [61]

    Pickard C J, Mauri F 2001 Phys. Rev. B 63 245101Google Scholar

    [62]

    Le Roux S, Petkov V 2010 J. Appl. Cryst. 43 181Google Scholar

    [63]

    Goetzke K, Klein H J 1991 J. Non-Cryst. Solids 127 215Google Scholar

    [64]

    Yuan X, Cormack A N 2002 Comput. Mater. Sci. 24 343Google Scholar

    [65]

    Van Ginhoven R M, Jónsson H, Corrales L R 2005 Phys. Rev. B 71 024208Google Scholar

    [66]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar

    [67]

    Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Richard N 2014 Phys. Rev. B 90 014108Google Scholar

    [68]

    Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M, Schrimpf R D 2007 Microelectron. Reliab. 47 903Google Scholar

  • [1] 陈苏琪, 何峰. 强激光驱动产生的氢原子高次谐波中的法诺共振.  , doi: 10.7498/aps.74.20250617
    [2] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , doi: 10.7498/aps.69.20201231
    [3] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算.  , doi: 10.7498/aps.67.20180626
    [4] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究.  , doi: 10.7498/aps.66.067202
    [5] 杨亮, 王才壮, 林仕伟, 曹阳. 氧原子在钛晶体中扩散的第一性原理研究.  , doi: 10.7498/aps.66.116601
    [6] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , doi: 10.7498/aps.66.216801
    [7] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , doi: 10.7498/aps.64.013101
    [8] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算.  , doi: 10.7498/aps.64.026602
    [9] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算.  , doi: 10.7498/aps.63.207301
    [10] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究.  , doi: 10.7498/aps.62.206102
    [11] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究.  , doi: 10.7498/aps.62.127301
    [12] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性.  , doi: 10.7498/aps.62.074201
    [13] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究.  , doi: 10.7498/aps.61.148801
    [14] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , doi: 10.7498/aps.61.047101
    [15] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , doi: 10.7498/aps.59.4170
    [16] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计.  , doi: 10.7498/aps.58.4853
    [17] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究.  , doi: 10.7498/aps.58.5362
    [18] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究.  , doi: 10.7498/aps.55.6042
    [19] 康 帅, 刘 强, 钟振祥, 张现周, 史庭云. 氢原子Rydberg态抗磁谱的高阶B-spline基组计算.  , doi: 10.7498/aps.55.3380
    [20] 李兴华, 杨亚天. 氢原子波函数的玻色算子表示.  , doi: 10.7498/aps.54.12
计量
  • 文章访问数:  235
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-24
  • 修回日期:  2025-07-17
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map