Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical Analysis of Dynamical Behavior in Josephson Junctions with Non-Sinusoidal Current-Phase Relations

YANG Liangliang HE Kaiyong DAI Genting CHANG Jinlin JIANG Linpan SUN Zhenyuan LIU Jianshe CHEN Wei

Citation:

Numerical Analysis of Dynamical Behavior in Josephson Junctions with Non-Sinusoidal Current-Phase Relations

YANG Liangliang, HE Kaiyong, DAI Genting, CHANG Jinlin, JIANG Linpan, SUN Zhenyuan, LIU Jianshe, CHEN Wei
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • As the core nonlinear element underpinning superconducting electronics, the Josephson junction is characterized by its current-phase relation (CPR), which fundamentally determines the dynamical properties and functional capabilities of superconducting quantum devices. Traditional Josephson junctions typically exhibit a conventional sinusoidal CPR; however, junctions characterized by non-sinusoidal CPR have recently attracted considerable attention due to their distinctive physical properties and promising quantum device applications. In this study, we developed a numerical model tailored specifically for junctions exhibiting non-sinusoidal CPR by integrating experimentally measured current-voltage (I-V) characteristics from Nb/Al-AlOx/Nb junctions into a resistively and capacitively shunted junction (RCSJ) framework. Leveraging this refined model, we systematically explored the influence of CPR skewness on Josephson junction dynamics. Our results reveal that, in underdamped junctions, the critical current significantly diminishes with increasing CPR skewness, a behavior reminiscent of the tunable critical currents typically observed in DC superconducting quantum interference devices (SQUID). Conversely, in overdamped junctions, the influence of CPR skewness on the I-V characteristics is found to be negligible. However, our numerical simulations under microwave irradiation reveal that nonsinusoidal CPRs readily promote the emergence of half-integer Shapiro steps in overdamped junctions, thereby establishing CPR skewness as a plausible microscopic origin for this phenomenon. In addition, we employed Advanced Design System (ADS) simulations to model nonlinear resonators and DC SQUID circuits, offering a detailed investigation into how nonsinusoidal CPRs modulate the Josephson inductance and magnetic flux response. Our findings reveal that engineering the CPR of Josephson junctions provides substantial flexibility in the design of superconducting qubits, parametric amplifiers, and non-magnetic nonreciprocal devices. This tunability underscores significant opportunities for the development of next-generation superconducting electronic components. Josephson junctions with engineered CPR offer expanded functionality for superconducting quantum technologies. This study shows that tailoring CPR enables enhanced control over the dynamical behavior of junctions, facilitating optimized designs of superconducting qubits, parametric amplifiers, and nonmagnetic nonreciprocal devices.
  • [1]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerreiro T, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jensen K, Jiang Z, Kelly J, Klimov P V, Knysh S, Korotkov A N, Kostritsa F, Landhuis D, Lindmark M, Lucero E, MacKay D, Martin O, McClean J R, McEwen M, Megrant A, Mi X, Morvan A, Neeley M, Neill C, Neven H, Niu M Y, O’Brien T, Ostby E, Petukhov A, Putterman H, Quintana C, Redd C, Rieffel E G, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Zhang Y, Zhong Y, Martinis J M 2019 Nature 574505

    [2]

    Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo Q, Han L, Hong L, Huang T, Huo Y H, Li C, Li L, Li N, Li S, Li Y, Liang H, Lin J, Lin Z, Qian H, Rong H, Su H, Sun Y, Wang H, Wang S, Wu D, Xu Y, Yan Z, Yang F, Ye Y, Ying C, Yu J, Zha C, Zhai H, Zhang H, Zhang K, Zhang L, Zhang Y, Zhao P, Zhao Y, Zheng D, Zhou H, Zhu Q, Pan J W 2021 Phys. Rev. Lett. 127180501

    [3]

    Renger M, Pogorzalek S, Chen Q, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F, Fedorov K G, Wulf M, Goetz J, Wulschner F, Eder P, Fischer M, Haeberlein M, Schneider A, Wegscheider W, Menzel E P, Rotzinger H, Fowler A G, Wilhelm F K, Michler P 2021 npj Quantum Information 7160

    [4]

    Yang L, He K, Dai G, Cheng M, Liu J, Chen W 2025 J. Supercond. Nov. Magn. 38101

    [5]

    He K, Dai G, Yu Q, He Y, Zhao C, Liu J, Chen W 2023 Supercond. Sci. Technol. 36045010

    [6]

    Xue H, Lin Z, Jiang W, Niu Z, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30068503

    [7]

    Choi G, Kim B, Choi J, Park K, Chong Y, Lee Y H 2023 IEEE Trans. Appl. Supercond. 331

    [8]

    Qiu J Y, Grimsmo A, Peng K, Kannan B, Lienhard B, Sung Y, Krantz P, Bolkhovsky V, Calusine G, Kim D, Oliver W D 2023 Nat. Phys. 19706

    [9]

    Macklin C, O’Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350307

    [10]

    Krylov G, Friedman E G 2021 IEEE Trans. Appl. Supercond. 311

    [11]

    Clarke J, Braginski A I 2006 The SQUID Handbook: Applications of SQUIDs and SQUID Systems (John Wiley & Sons)

    [12]

    Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C, Han W 2021 Phys. Rev. B 104104414

    [13]

    Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121177702

    [14]

    Raes B, Tubsrinuan N, Sreedhar R, Guala D S, Panghotra R, Dausy H, de Souza Silva C C, Van de Vondel J 2020 Phys. Rev. B 102054507

    [15]

    Basset J, Kuzmanović M, Virtanen P, Heikkilä T T, Estève J, Gabelli J, Strunk C, Aprili M 2019 Phys. Rev. Res. 1032009

    [16]

    Kalantre S S, Yu F, Wei M T, Watanabe K, Taniguchi T, Hernandez-Rivera M, Amet F, Williams J R 2020 Phys. Rev. Res. 2023093

    [17]

    Ueda K, Matsuo S, Kamata H, Sato Y, Takeshige Y, Li K, Samuelson L, Xu H, Tarucha S 2020 Phys. Rev. Res. 2033435

    [18]

    Hart S, Cui Z, Ménard G, Deng M, Antipov A E, Lutchyn R M, Krogstrup P, Marcus C M, Moler K A 2019 Phys. Rev. B 100064523

    [19]

    Spanton E M, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J, Marcus C M, Moler K A 2017 Nat. Phys. 131177

    [20]

    Nanda G, Aguilera-Servin J L, Rakyta P, Kormányos A, Kleiner R, Koelle D, Watanabe K, Taniguchi T, Vandersypen L M K, Goswami S 2017 Nano Lett. 173396

    [21]

    English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N, Van Harlingen D J 2016 Phys. Rev. B 94115435

    [22]

    Borzenets I V, Amet F, Ke C T, Draelos A W, Wei M T, Seredinski A, Watanabe K, Taniguchi T, Bomze Y, Yamamoto M, Finkelstein G 2016 Phys. Rev. Lett. 117237002

    [23]

    Lee G H, Kim S, Jhi S H, Lee H J 2015 Nat. Commun. 66181

    [24]

    Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z Q, Zhang F 2018 Phys. Rev. Lett. 120177704

    [25]

    Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121097701

    [26]

    Li C, de Boer J C, de Ronde B, Ramankutty S V, van Heumen E, Huang Y, de Visser A, Golubov A A, Golden M S, Brinkman A 2018 Nat. Mater. 17875

    [27]

    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Molenkamp L W 2016 Nat. Commun. 710303

    [28]

    Hou Y L, Wang X, Sun X P, Lü L 2023 Acta Phys. Sin. 727. (in Chinese) [侯延亮,王翔,孙晓培, 吕力2023 727]

    [29]

    Wiedenmann J 2018 Induced Topological Superconductivity in HgTe Based Nanostructures. Ph.D. Dissertation, Julius-Maximilians-Universität Würzburg. Chapter 12, p.73

    [30]

    Bordin A, Liu C X, Dvir T, Zatelli F, Ten Haaf S L D, van Driel D, Wang G, Van Loo N, Zhang Y, Wolff J C, Kouwenhoven L P 2025 Nat. Nanotechnol. 1In press

    [31]

    Tanaka Y, Tamura S, Cayao J 2024 Prog. Theor. Exp. Phys. 202408C105

    [32]

    Zhu P, Feng S, Wang K, Xiang T, Trivedi N 2025 Nat. Commun. 162420

    [33]

    Yang L, He K, Dai G, Cheng M, Geng X, Jiang L, Chang J, Liu J, Chen W 2025 Phys. Lett. A 540130401

    [34]

    Kamal A, Clarke J, Devoret M H 2011 Nat. Phys. 7311

    [35]

    Kumar N P, Le D T, Pakkiam P, Stace T M, Fedorov A 2025 Phys. Rev. Res. 7013075

    [36]

    Khaira N K 2022 Reconfigurable Cryogenic Microwave Devices Using Low Temperature Superconducting RF-SQUIDs. Ph.d. dissertation, University of Waterloo

    [37]

    Ingla-Aynés J, Hou Y, Wang S, Chu E D, Mukhanov O A, Wei P, Moodera J S 2025 Nat. Electron. 1In press

    [38]

    Nadeem M, Fuhrer M S, Wang X 2023 Nat. Rev. Phys. 5558

    [39]

    Hou Y, Nichele F, Chi H, Lodesani A, Wu Y, Ritter M F, Haxell D Z, Davydova M, Ilić S, GlezakouElbert O 2023 Phys. Rev. Lett. 131027001

    [40]

    Castellani M, Medeiros O, Buzzi A, Foster R A, Colangelo M, Berggren K K 2024 Nat. Electron. 8417

    [41]

    Kayyalha M, Kazakov A, Miotkowski I, Khlebnikov S, Rokhinson L P, Chen Y P 2020 npj Quantum Mater. 57

    [42]

    Huang Z, Elfeky B H, Taniguchi T, Watanabe K, Shabani J, Shahrjerdi D 2023 Appl. Phys. Lett. 122262601

    [43]

    Panghotra R, Raes B, de Souza Silva C C, Cools I, Van de Vondel J 2020 Commun. Phys. 3169

    [44]

    Frattini N E, Vool U, Shankar S, Narla A, Sliwa K M, Devoret M H 2017 Appl. Phys. Lett. 110222603

    [45]

    Ranadive A, Esposito M, Planat L, Bonet E, Naud C, Buisson O, Guichard W, Roch N 2022 Nat. Commun. 131737

    [46]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 46564

    [47]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6296

    [48]

    Josephson B D 1962 Phys. Lett. 1251

    [49]

    Prance J R, Thompson M D 2023 Appl. Phys. Lett. 122222602

  • [1] Hou Yan-Liang, Wang Xiang, Sun Xiao-Pei, Lü Li. Anomalous critical supercurrent and half-integer Shapiro steps based on Josephson junction of topological insulator nanowires. Acta Physica Sinica, doi: 10.7498/aps.72.20222072
    [2] Zhang Ding, Zhu Yu-Ying, Wang Heng, Xue Qi-Kun. Josephson effect in twisted cuprates. Acta Physica Sinica, doi: 10.7498/aps.72.20231815
    [3] Li Zhong-Xiang, Wang Shu-Ya, Huang Zi-Qiang, Wang Chen, Mu Qing. Preparation of Al2O3 tunnel barrier layer in atome-level controlled Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.71.20220820
    [4] Li Chun-Guang, Wang Jia, Wu Yun, Wang Xu, Sun Liang, Dong Hui, Gao Bo, Li Hao, You Li-Xing, Lin Zhi-Rong, Ren Jie, Li Jing, Zhang Wen, He Qing, Wang Yi-Wen, Wei Lian-Fu, Sun Han-Cong, Wang Hua-Bing, Li Jin-Jin, Qu Ji-Feng. Recent progress of superconducting electronics in China. Acta Physica Sinica, doi: 10.7498/aps.70.20202121
    [5] Han Jin-Ge, Ouyang Peng-Hui, Li En-Ping, Wang Yi-Wen, Wei Lian-Fu. Experimentally estimating of physical parameters of the fabricated superconducting Josephson junctions. Acta Physica Sinica, doi: 10.7498/aps.70.20210393
    [6] Chen Heng-Jie, Xue Hang, Li Shao-Xiong, Wang Zhen. A method of determining microwave dissipation of Josephson junctions with non-linear frequency response. Acta Physica Sinica, doi: 10.7498/aps.68.20190167
    [7] Wang Lan-Ruo, Zhong Yuan, Li Jin-Jin, Qu Ji-Feng, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Zhou Zhi-Qiang, Fu Kai, Shi Yong. Development of quantum voltage noise source chip for precision measurement of Boltzmann constant. Acta Physica Sinica, doi: 10.7498/aps.67.20172643
    [8] Wang Song, Wang Xing-Yun, Zhou Zhang-Yu, Yang Fa-Shun, Yang Jian, Fu Xing-Hua. Preparation, microstructure of B film and its applications in MgB2 superconducting Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.65.017401
    [9] Chen Zhao, He Gen-Fang, Zhang Qing-Ya, Liu Jian-She, Li Tie-Fu, Chen Wei. Fabrication and characterization of the superconducting quantum interference device amplifier with Washer type input coil. Acta Physica Sinica, doi: 10.7498/aps.64.128501
    [10] Cao Wen-Hui, Li Jin-Jin, Zhong Qing, Guo Xiao-Wei, He Qing, Chi Zong-Tao. Fabrication and characterization of single Nb/NbxSi1-x/Nb Josephson junction for voltage standard. Acta Physica Sinica, doi: 10.7498/aps.61.170304
    [11] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Hopf bifurcation and chaotification of Josephson junction with linear delayed feedback. Acta Physica Sinica, doi: 10.7498/aps.60.060306
    [12] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Analytical analysis of periodic solution and its stability in Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.60.030308
    [13] Yue Hong-Wei, Yan Shao-Lin, Zhou Tie-Ge, Xie Qing-Lian, You Feng, Wang Zheng, He Ming, Zhao Xin-Jie, Fang Lan, Yang Yang, Wang Fu-Yin, Tao Wei-Wei. Millimeter wave irradiation characteristics of high temperature superconductor bicrystal Josephson junction embedded in a Fabry-Perot resonator. Acta Physica Sinica, doi: 10.7498/aps.59.1282
    [14] Yue Hong-Wei, Wang Zheng, Fan Bin, Song Feng-Bin, You Feng, Zhao Xin-Jie, He Ming, Fang Lan, Yan Shao-Lin. Millimeter wavelength coherent emission from high temperature superconducting bicrystal Josephson junction array. Acta Physica Sinica, doi: 10.7498/aps.59.5755
    [15] Wang Zheng, Yue Hong-Wei, Zhou Tie-Ge, Zhao Xin-Jie, He Ming, Xie Qing-Lian, Fang Lan, Yan Shao-Lin. Dynamic characteristics of Tl-2212 bicrystal Josephson junctions on SrTiO3 substrates and the effect of noise on it. Acta Physica Sinica, doi: 10.7498/aps.58.7216
    [16] Cui Da-Jian, Lin De-Hua, Yu Hai-Feng, Peng Zhi-Hui, Zhu Xiao-Bo, Zheng Dong-Ning, Jing Xiu-Nian, Lü Li, Zhao Shi-Ping. Quantum corrections in fitting the switching current distributions of intrinsic Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.57.5933
    [17] Li Zhao-Xin, Zou Jian, Cai Jin-Fang, Shao Bin. Entanglement between charge qubit and quantized field. Acta Physica Sinica, doi: 10.7498/aps.55.1580
    [18] Xiao Yu-Fei, Wang Deng-Long, Wang Feng-Jiao, Yan Xiao-Hong. Dynamical properties of an asymmetric Josephson junction in Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.55.547
    [19] WANG ZHEN-YU, LIAO HONG-YIN, ZHOU SHI-PING. STUDIES OF THE DC BIASED JOSEPHSON JUNCTION COUPLED TO A RESONANT TANK. Acta Physica Sinica, doi: 10.7498/aps.50.1996
    [20] HAN BING, CHEN GENG-HUA, XU FENG-ZHI, ZHAO SHI-PING, YANG QIAN-SHENG. YBCO STEP-EDGE JUNCTION DC-SQUID PLANAR GRADIOMETER. Acta Physica Sinica, doi: 10.7498/aps.49.2051
Metrics
  • Abstract views:  65
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  28 July 2025
  • /

    返回文章
    返回
    Baidu
    map