Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge transfer process of laser-accelerated low-energy carbon ion beams in porous CHO foams

CHENG Yu REN Jieru MA Bubo LIU Yun ZHAO Ziqian WEI Wenqing H. H Hoffmann DENG Zhigang QI Wei ZHOU Weimin CHENG Rui LI Zhongliang SONG Lei LI Yuan ZHAO Yongtao

Citation:

Charge transfer process of laser-accelerated low-energy carbon ion beams in porous CHO foams

CHENG Yu, REN Jieru, MA Bubo, LIU Yun, ZHAO Ziqian, WEI Wenqing, H. H Hoffmann, DENG Zhigang, QI Wei, ZHOU Weimin, CHENG Rui, LI Zhongliang, SONG Lei, LI Yuan, ZHAO Yongtao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Charge transfer processes in ion-matter interactions are crucial for ion beam-driven high-energy density physics, material irradiation damage, and charge state stripping in accelerator techniques. Here we generate carbon ion beams in the MeV energy range through target normal sheath acceleration (TNSA) mechanism, and measure the average charge state of 1.5–4.5 MeV carbon ion beams passing through porous C9H16O8 foam with a volume density of 2 mg/cm3. The measured average charge states are compared with the average equilibrium charge-states predicted by semi-empirical formula and rate equation. The results show that the predictions from the rate equation that fully considers the ionization, capture, excitation, and de-excitation processes are in good agreement with experimental results. The prediction from the rate equation by using gas target cross-section data underestimates the experimental data, because the target density effect caused by the solid fiber filaments in the foam-structured target increases the ionization probability through frequent collisions, reduces the electron capture probability, and thus leads to an enhancement of ion charge states. In the projectile energy range above 3 MeV, the experimental data agree with the predictions from the rate equation using solid-target cross-section data. However, a significant deviation emerges in the energy region below 3 MeV due to the fact that in this energy range, the lifetime of ion excited states is shorter than the collisional time scale. In this case, excited electrons have time to de-excite the ground state before the second collision occurs. Consequently, the target density effects are weakened, and the charge states are reduced. The experimental results agree well with predictions from the ETACHA code that considers excitation and de-excitation processes in detail. This work provides the data and references for better understanding ion-matter interactions and distinguishing various charge exchange models.
  • 图 1  皮秒激光聚焦在铜箔上, 通过TNSA机制产生强流碳离子束. 使用与IP耦合的双通道TPS记录穿过泡沫靶和空靶的碳离子能谱

    Figure 1.  Experimental setup. A picosecond laser is focused onto a copper foil, generating an intense carbon ion beam through the TNSA mechanism. The energy spectra of carbon ions passing through the foam target and the empty hole are measured with a dual-channel TPS coupled to the IP.

    图 2  激光加速的碳离子分布 (a) 穿过空靶的能谱分布; (b) 穿过泡沫靶的能谱分布; (c) 穿过空靶的电荷分布; (d) 穿过泡沫靶的电荷分布

    Figure 2.  Carbon ions distribution of laser-accelerated: (a) The energy spectra of passing through without target; (b) the energy spectra of passing through foam target; (c) charge state distribution of passing through without foam; (d) charge state distribution of passing through foam target.

    图 3  碳离子穿过泡沫靶前后的平均电荷态实验值

    Figure 3.  Experimental data of average charge state of carbon ions before and after passing foam target.

    图 4  测量的平均电荷态与理论预测值的比较 (a)与半经验模型比较; (b)与通过求解速率方程得出的预测值的比较. 实验数据是两发次的平均值, 其中能量误差为TPS对各电荷态碳离子能量分辨的最小值, 电荷态误差源于实验统计误差和发次抖动误差

    Figure 4.  Comparison of measured average charge states with theoretical predictions: (a) The comparison with semiempirical models; (b) the comparison with predictions through solving rate equations. The experimental data are averaged over two shots, the error bars of energy represent the energy resolution of the TPS for the ion species that has the lowest resolution, the error bars of the average charge state originate from the statistical errors and shot-to-shot fluctuations

    图 5  碳离子激发态寿命(红线)及碰撞时间尺度(黑线)与能量的关系, 其中激发态寿命的数据引自文献[50]

    Figure 5.  Carbon ion excited state lifetime (red line) and collision time scale (black line) versus energy. Results for excited state lifetime are taken from Ref.[50].

    Baidu
  • [1]

    Shima K, Kuno N, Yamanouchi M 1989 Phys. Rev. A 40 3557Google Scholar

    [2]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [3]

    Rothard H, Grandin J P, Jung M, Clouvas A, Rozet J P, Wünsch R 1997 Nucl. Instrum. Methods Phys. Res. Sect. B 132 359Google Scholar

    [4]

    Betz H D 1972 Rev. Mod. Phys. 44 465Google Scholar

    [5]

    Deutsch C, Maynard G 2016 Matter Radiat. Extremes 1 277Google Scholar

    [6]

    Gao J, Hu Z, Wu Y, Wang J, Sisourat N, Dubois A 2021 Matter Radiat. Extremes 6 014404Google Scholar

    [7]

    Erb W 1978 GSI Report GSI-P-78 (Darmstadt

    [8]

    Ali R, Beiersdorfer P, Harris C L, Neill P A 2016 Phys. Rev. A 93 012711Google Scholar

    [9]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

    [10]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [11]

    Hofmann I 2018 Matter Radiat. Extremes 3 1Google Scholar

    [12]

    Zhao Q, Cao S C, Liu M, Sheng X K, Wang Y R, Zong Y, Zhang X M, Jing Y, Cheng R, Zhao Y T, Zhang Z M, Du Y C, Gai W 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 832 144Google Scholar

    [13]

    Zhao Y, Zhang Z, Gai W, Du Y, Cao S, Qiu J, Zhao Q, Cheng R, Zhou X, Ren J, Huang W, Tang C, Xu H, Zhan W 2016 Laser Part. Beams 34 338Google Scholar

    [14]

    Zhao Y T, Rui Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Science and Engineering. 2 e39Google Scholar

    [15]

    Bohr N 1941 Phys. Rev. 59 270Google Scholar

    [16]

    Anthony J M, Lanford W A 1892 Phys. Rev. A 25 1868

    [17]

    Ziegler J F, Biersack J P 1985 Treatise on Heavy - Ion Science 6 93

    [18]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 23 82Google Scholar

    [19]

    Nikolaev V S, Dmitriev I S 1968 Phys. Lett. A 28 277Google Scholar

    [20]

    Brown M D, Moak C D 1972 Phys. Rev. B 6 90Google Scholar

    [21]

    Shima K, Ishihara T, Mikumo T 1982 Nucl. Instrum. Methods Phys. Res. 200 605Google Scholar

    [22]

    To K X, Drouin R 1976 Phys. Scr. 14 277Google Scholar

    [23]

    Schiwietz G, Grande P L 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 175 125

    [24]

    Basko M M 1984 Sov. J. Plasma Phys. 10 689

    [25]

    Northcliffe L C 1960 Phys. Rev. 120 1744Google Scholar

    [26]

    Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013 Phys. Rev. Lett. 110 135003Google Scholar

    [27]

    Tolstikhina I Y, Shevelko V P 2018 Phys. - Usp. 61 247Google Scholar

    [28]

    Lassen N O 1951 Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 26 5

    [29]

    Bohr N, Lindhard J 1954 Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 28 7

    [30]

    Shevelko V P, Rosmej O, Tawara H, Tolstikhina I Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 201Google Scholar

    [31]

    Shevelko V P, Tawara H, Ivanov O V, Miyoshi T, Noda K, Sato Y, Subbotin A V, Tolstikhina I Y 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2675Google Scholar

    [32]

    Kistler S S 1931 Nature 127 741

    [33]

    Rosmej O N, Suslov N, Martsovenko D, Vergunova G, Borisenko N, Orlov N, Rienecker T, Klir D, Rezack K, Orekhov A, Borisenko L, Krousky E, Pfeifer M, Dudzak R, Maeder R, Schaechinger M, Schoenlein A, Zaehter S, Jacoby J, Limpouch J, Ullschmied J, Zhidkov N 2015 Plasma Phys. Control. Fusion 57 094001Google Scholar

    [34]

    Ren J R, Deng Z G, Qi W, Chen B Z, Ma B B, Wang X, Yin S, Feng J H, Liu W, Xu Z F, Hoffmann D H H, Wang S Y, Fan Q P, Cui B, He S K, Cao Z R, Zhao Z Q, Cao L F, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, H W, Zhang Y H, Zhang Z, Li Y T, Wu D, Zhou W M, Zhao Y T 2020 Nat. Commu. 11 5157Google Scholar

    [35]

    Ma B B, Ren J R, Wang S Y, Hoffmann D H H, Deng Z G, Qi W, Wang X, Yin S, Feng J H, Fan Q P, Liu W, Xu Z F, Chen Y, Cui B, He S K, Cao Z R, Zhao Z Q, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, Zhao H W, Zhang Y H, Zhang Z, Li Y T, Xu X, Wei W Q, Chen B Z, Zhang S Z, Hu Z M, Liu L R, Li F F, Xu H, Zhou W M, Cao L F, Zhao Y T 2021 Astrophys. J. 920 106Google Scholar

    [36]

    Renner O, Klimo O, Krus K, Nicolaï P, Poletaeva A, Bukharskii N, Tikhonchuk V T 2025 Matter Radiat. Extremes 10 037403Google Scholar

    [37]

    Braenzel J, Andreev A A, Platonov K, Klingsporn K, Ehrentraut L, Sandner W, Schnürer M 2015 Phys. Rev. Lett. 114 124801Google Scholar

    [38]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter V J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [39]

    Braenzel J, Barriga-Carrasco M D, Morales R, Schnürer M 2018 Phys. Rev. Lett. 120 184801Google Scholar

    [40]

    朱军高, 卢海洋, 赵媛, 赖美福, 古永力, 徐世祥, 周沧涛 2022 71 194102Google Scholar

    Zhu J G, Lu H Y, Zhao Y, Lai M F, Gu Y L, Xu S X, Zhou C T 2022 Acta Phys. Sin. 71 194102Google Scholar

    [41]

    Zhao S A, Lin C, Chen J E, Ma W J, Wang J J, Yan X Q 2016 Chin. Phys. Lett. 33 035202Google Scholar

    [42]

    Ren J R, Ma B B, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2023 Phys. Rev. Lett. 130 095101Google Scholar

    [43]

    Ma B B, Ren J R, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Li W X, Li Q Y, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2024 Phys. Rev. A 109 042810Google Scholar

    [44]

    Hattass M, Schenkel T, Hamza A V, Barnes A V, Newman M W, McDonald J W, Niedermayr T R, Machicoane G A, Schneider D H 1999 Phys. Rev. Lett. 82 4795Google Scholar

    [45]

    Charge changing cross sections code, Novikov N V http://cdfe.sinp.msu.ru/services/cccc/htm/ [2024-7-28]

    [46]

    Novikov N V, Teplova Y A 2014 Phys. Lett. A 378 1286Google Scholar

    [47]

    Rozet J P, Stephan C, Vemhet D 1996 Nucl. Instrum. Methods Phys. Res. Sect. B 107 67Google Scholar

    [48]

    Tarasov O B, Bazin D 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 4657Google Scholar

    [49]

    Lamour E, Fainstein P D, Galassi M, Prigent C, Ramirez C A, Rivarola R D, Rozet J P, Trassinelli M, Vernhet D 2015 Phys. Rev. A 92 042703Google Scholar

    [50]

    Soumaya, Manai, Salhi D E, Nasr S B, Jelassi H 2022 Res. Phys. 37 105487

  • [1] LIANG Yaqiong, LIANG Guiyun. Solar wind charge-exchange X-ray emission factor based on ACE observation data. Acta Physica Sinica, doi: 10.7498/aps.74.20241603
    [2] ZHANG Chongrui, HE Wenliang, CAO Shiquan, Xie Luyou, Dong Chenzhong. Theoretical Study on Charge-State Evolution of Carbon Ions Penetrating Hydrogen Plasma. Acta Physica Sinica, doi: 10.7498/aps.74.20250668
    [3] Zhu Jun-Gao, Lu Hai-Yang, Zhao Yuan, Lai Mei-Fu, Gu Yong-Li, Xu Shi-Xiang, Zhou Cang-Tao. Beamline design with weak-focusing magnetic field for applications of laser-driven proton beams. Acta Physica Sinica, doi: 10.7498/aps.71.20220599
    [4] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, doi: 10.7498/aps.70.20201685
    [5] Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu. Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma. Acta Physica Sinica, doi: 10.7498/aps.68.20191106
    [6] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, doi: 10.7498/aps.66.184101
    [7] Ling Wei-Jun, Dong Quan-Li, Zhang Lei, Zhang Shao-Gang, Dong Zhong, Wei Kai-Bin, Wang Shou-Jun, He Min-Qing, Sheng Zheng-Ming, Zhang Jie. Laser driven shock accelerated ion energy spectrumbroadening mechanisms in over-dense plasmas. Acta Physica Sinica, doi: 10.7498/aps.60.075201
    [8] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, doi: 10.7498/aps.57.7680
    [9] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, doi: 10.7498/aps.55.2381
    [10] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Two-dimension numerical research on the ablation of target irradiated by intense pulsed ion beam. Acta Physica Sinica, doi: 10.7498/aps.55.398
    [11] Yang Chao-Wen, Miao Jing-Wei, Wang Guang-Lin, Liu Xiao-Dong, Shi Mian-Gong. The electron exchange of MeV hydrogen micro-cluster ions with solids. Acta Physica Sinica, doi: 10.7498/aps.55.5810
    [12] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang. Study on irradiation threshold of a target irradiated by an intense pulsed ion b eam. Acta Physica Sinica, doi: 10.7498/aps.54.1636
    [13] Hua Jian-Fei, Huo Yu-Kun, Lin Yu-Zheng, Chen Zhao, Xie Yong-Jie, Zhang Shao-Yin, Yan Zheng, Xu Jun-Jie. Dynamic characteristics of electrons in high-order corrected fields of ultrashort laser pulses. Acta Physica Sinica, doi: 10.7498/aps.54.653
    [14] Bai Long, Weng Jia-Qiang, Fang Jin-Qing, Luo Xiao-Shu. The simulation of ionic radial density in high intensity ion beam*. Acta Physica Sinica, doi: 10.7498/aps.53.4126
    [15] Yang Bai-Fang, Miao Jing-Wei, Yang Chao-Wen, Shi Mian-Gong, Tang A-You, Liu Xiao-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.55
    [16] LIAO MEI-YONG, ZHANG JIAN-HUI, QIN FU-GUANG, LIU ZHI-KAI, YANG SHAO-YAN, WANG ZHAN-GUO, LEE SHUIT-TANG. CARBON FILM DEPOSITED BY MASS-SELECTED LOW ENERGY ION BEAM TECHNIQUE AND ION BOMBARDMENT EFFECT. Acta Physica Sinica, doi: 10.7498/aps.49.2186
    [17] WANG YAN-SEN, PAN LI-MIN, HUANG FA-YANG, FANG DU-FEI, TANG JIA-YONG, YANG FU-JIA. CHARGE-EXCHANGE OF CESIUM ION/ATOM WITH METAL SURFACES. Acta Physica Sinica, doi: 10.7498/aps.43.1950
    [18] WANG YOU-NIAN, MA TENG-CAI, GONG YE. ELECTRONIC STOPPING POWER AND EFFECTIVE CHARGE OF HEAVY ION-BEAM IN HOT TARGETS. Acta Physica Sinica, doi: 10.7498/aps.42.631
    [19] LI FU-LI. CONTINUOUSLY TURNABLE LASER FROM INFRARED TO X-RAY REGION BY USING THE RELATIVISTIC DOPPLER EFFECT OF HIGH ENERGY ION BEAM IN NEGATIVE TEMPERATURE STATE. Acta Physica Sinica, doi: 10.7498/aps.29.429
    [20] SEN QING-HE, JIANG SONG-SHENG, GU YI-PAN. PULSED MODULATION OF CYCLOTRON ION BEAM. Acta Physica Sinica, doi: 10.7498/aps.16.94
Metrics
  • Abstract views:  191
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2025
  • Accepted Date:  18 June 2025
  • Available Online:  08 July 2025
  • /

    返回文章
    返回
    Baidu
    map