搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ACE观测数据的太阳风电荷交换X射线辐射因子

梁雅琼 梁贵云

引用本文:
Citation:

基于ACE观测数据的太阳风电荷交换X射线辐射因子

梁雅琼, 梁贵云

Solar wind charge-exchange X-ray emission factor based on ACE observation data

LIANG Yaqiong, LIANG Guiyun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 太阳风电荷交换是太阳风粒子与行星大气中性粒子碰撞过程中的一种非弹性碰撞过程,碰撞相伴产生软X射线辐射,对行星大气的演化起着重要的影响。中欧联合卫星|太阳风与地球磁层相互作用全景成像(SMILE)正是利用这种X射线辐射研究太阳风与地球大气相互作用的全局性结构。但这种辐射对天体弥散X射线源研究是一种重要的干扰,直接影响对目标源的观测分析。电荷交换辐射因子是分析空间X射线探测器观测数据(包括中国空间站建议载荷-银河系热重子探寻计划(DIXE)和爱因斯坦探针(EP))的关键物理量。本文采用美国先进成份空间探测器(ACE)13年(1998-2011)的探测数据,结合前期发展的辐射分析模型,研究了不同时间段和不同太阳风起源的电荷交换辐射因子,并与前人结果进行了比较研究,统计分析揭示了其随太阳风参数的变化规律,即平均辐射因子随太阳风质子数密度增大快速变小并达到稳定值,而随太阳风速度增大而缓慢变大并在v >430 km/s趋于恒定。冕物质抛射的辐射因子比冕流和冕洞的大,太阳活动强周期的辐射因子比弱周期的大。
    This study aims to quantify the solar wind charge-exchange (SWCX) X-ray emission factors (denoted as α-value) and their dependence on solar wind parameters, solar activity cycles, and solar wind origins. By analyzing 13 years (1998{2011) of in situ measurements from the Advanced Composition Explorer (ACE) spacecraft, we investigate the statistical correlations between solar wind ionization states, elemental abundances (particularly oxygen), and bulk plasma parameters (proton speed, density). The derived α-values are critical for interpreting the data from Solar wind and Magnetosphere Interaction Linker Explorer (SMILE), and disentangling SWCX foreground emissions from diffuse astrophysical X-ray sources observed by Einstein Probe (EP) and proposed DIffuse X-ray Explorer (DIXE) payload on Chinese Space Station. This work analyzed high-resolution solar wind ion composition data and plasma parameters from ACE. Events were categorized by solar wind origin (coronal holes, streamers, interplanetary coronal mass ejections (ICMEs)) and solar cycle phase (minimum vs maximum). α-value, defined as the total soft X-ray photon emission cross section per solar wind proton, was computed using an updated charge-exchange model incorporating state-resolved cross-sections for highly charged ions. The model accounts for velocity-dependent cross-section of solar wind-neutral interaction. Statistical method and bin-averaging techniques were applied to extract correlations between α, solar wind speed (vsw), proton density (np), and oxygen abundance. The main results are:
    1. Ionization state dynamics: A strong anti-correlation exists between solar wind ionization degree and bulk speed: high-speed wind (>500 km/s) exhibit lower ionization states compared to slow wind (<400 km/s).
    2. Elemental abundance trends: Oxygen abundance ([O/H]) anti-correlates with np: denser solar wind plasmas (np > 13 cm-3) exhibit 30-50% lower [O/H], suggesting fractionation processes during plasma acceleration. No significant speed dependence of [O/H] was observed, contrasting with earlier studies.
    3. Emission factor (α-value) behavior: α-value decreases rapidly with increasing np and stabilizes for np > 13 cm-3. Conversely, α-value increases gradually with vsw up to 430 km/s, beyond which it plateaus (Fig. 5). ICME-associated α exceeds streamer and coronal hole values by 35-60%, attributed to higher averaged ionic state in transient ejecta. Solar maximum α (2000-2002) is 1.3-2.7 times higher than solar minimum (2008-2010), reflecting cycle-dependent ion composition changes.
    By bridging in situ solar wind measurements and X-ray emission physics, this work advances the capability to diagnose both solar wind-magnetosphere coupling and the diffuse X-ray background. The validated α-value will benefit data analysis for China’s space projects in the 2020s, for examples SMILE, DIXE and EP.
  • [1]

    Snowden S L, Freyberg M J, Plucinsky P P, Schmitt J H M M, Trümper J, Voges W, Edgar R J, McCammon D & Sanders W T 1995 Astrophys. J. 454643

    [2]

    Snowden S L, Egger R, Freyberg M J, McCammon D, Plucinsky P P, Sanders W T, Schmitt J H M M, Trümper J & Voges W 1997 Astrophys. J. 485125

    [3]

    Freyberg M J 1994 The Local Bubble and Beyond 1113

    [4]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trümper J & West R G 1996 Science 274205

    [5]

    Cravens T E 1997 Gelphys. Res. Lett. 24105

    [6]

    Cox D P 1998 Ed. by Breitschwerdt D, Freyberg M J, Trümper J 1998 Proceedings of the IAU Colloquium No. 166 Garching, Germany, April 21-251997 p121会议文集

    [7]

    Cravens T E 2000 Astrophys. J. 532 L153

    [8]

    Wargelin B J, Markevitch M, Juda M, Kharchenko V, Edgar R & Dalgarno A 2004 Astrophys. J. 607596

    [9]

    Bhardwaj A, Gladstone G R, Elsner R F, Waite J H, Grodent D, Cravens T E, Howell R R, Metzger A E, Ostgaard N, Maurellis A N, Johnson R E, Weisskopf M C, Majeed T, Ford P G Tennant A F, Clarke J T, Lewis W S, Hurley K C, Crary F J, Feigelson E D, Garmire G P, Young D T, Dougherty M K, Espinose S A & Jahn J M 2002 Proc. ESLAB 36 Symposium, ‘Earth-Like Planets and Moons’ 215

    [10]

    Robertson I P & Cravens T E 2003 Gelphys. Res. Lett. 301439(22-1)

    [11]

    Sembay S, Alme A L, Agnolon D, Arnold T, Beardmore A, Belen Balado Margeli A B, Bicknell C, Bouldin C, Branduardi-Raymont G, Crawford T, Breuer J P, Buggey T, Butcher G, Canchal R, Carter J A, Cheney A, Collado-Vega Y, Connor H, Crawford T, Eaton N, Feldman C, Forsyth C, Frantzen T, Galgóczi G, Garcia J, Genov G Y, Gordillo C, Gröbelbauer H P, Guedel M, Guo Y, Hailey M, Hall D, Hampson R, Hasiba J, Hetherington O, Holland A, Hsieh S Y, Hubbard M W J, Jeszenszky H, Jones M, Kennedy T, Koch-Mehrin K, Kögel S, Krucker S, Kuntz K D, Laky G, Lylyund O, Martindale A, Mas Hesse J M, Nakamura R, Oksavik K, Østgaard N, Ottacher H, Ottensamer R, Pagani C, Parsons S, Patel P, Pearson J, Peikert G, Porter F S, Pouliantis T, Qureshi B H, Raab W, Randall G, Read A M, Roque N M M, Rostad M E, Runciman C, Sachdev S, Samsonov A, Soman M, Sibeck D, Smit S, Søndergard J, Speight R, Stavland S, Steller M, Sun T, Thornhill J, Thomas W, Ullaland K, Walsh B, Walton D, Wang C & Yang S 2024 Earth & Planetary Phys. 85

    [12]

    Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K & Tillotson W A 2003 Science 3001558

    [13]

    Zhang R T, Liao T, Zhang C J, Zhou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F & Ma X 2023 Mon. Not. R. Astron. Soc. 5201417

    [14]

    Jin H, Mao J J, Chen L B, Chen N H, Cui W, Gao B, Li J J, Li X F, Liu J J, Quan J, Jiang C Y, Wang G L, Wang L, Wang Q, Wang S F, Xiao A M & Zhang S 2024 J. Low Temperature Phys. 215256

    [15]

    Sun T R, Connor H, Samsonov A 2024 Earth & Planetary Phys. 81

    [16]

    Schwadron N A & Cravens T E 2000 Astrophys. J. 544558

    [17]

    Smith R K, Foster A R & Brickhouse N S 2012 Astron. Nachr 333301

    [18]

    Gu L Y, Kaastra J & Raassen A J J 2016 A&A 588 A52

    [19]

    Cumbee R, Stancil P & Mcilvane S 2021 American Astronomical Society Meeting 23812601

    [20]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y & Zhao G 2014 Astrophys. J. 783124

    [21]

    Liang G Y, Zhu X L, Wei H G, Yuan D W, Zhong J Y, Wu Y, Hutton R, Cui W, Ma X W & Zhao G 2021 Mon. Not. R. Astron. Soc. 5082194

    [22]

    Whittaker I C & Sembay S 2016 Gelphys. Res. Lett. 437328

    [23]

    Koutroumpa D 2024 Earth & Planetary Phys. 8105

    [24]

    Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W & Zhao G 2023, Astrophys. J. 94385

    [25]

    Midha J M & Gupta S C 1994 J. Quant. Spectrosc. Radiat. Transfer 52897

    [26]

    Wargelin B J, Beiersdorfer P & Brown G V 2008 Can. J. Phys. 86151

    [27]

    Zhang R T, Seely D G, Andrianarijaona V M, Draganić I N & Havener C C 2022 Astrophys. J. 9311

    [28]

    Wu Y, Stancil P C, Schultz D R, Hui Y, Liebermann H P & Buenker R J 2012 J. Phs. B: At. Mol. Opt. Phys. bf 45235201

    [29]

    Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y & Schultz D R 2012 J. Phs. B: At. Mol. Opt. Phys. 45245202

    [30]

    Liu L, Wu Y, Wang J G & Janev R K 2022 At. Data & Nuclear Data Tables 143101464

    [31]

    Royal Observatory of Belgium,on-line Sunspot Number catalogue ‘1998-2012’ http://www.sidc.be/SILSO/, 00

    [32]

    Landi E, Gruesbeck J R, Lepri S T, Zurbuchen T H & Fisk L A 2012 Astrophys. J. 76148

    [33]

    Zhao L, Zurbuchen T H & Fisk L A 2009 Gelphys. Res. Lett. 36 L14104

    [34]

    Zhao L, Landi E, Lepri S T, Kocher M, Zurbuchen T H, Fisk L A, & Raines M J 2017 Astrophys. J. Supp. Ser. 2284

    [35]

    Zhang C, Ling Z X, Sun X J, Sun S L, Liu Y, Li Z D, Xue Y L, Chen Y F, Dai Y F, Jia Z Q, Liu H Y, Zhang X F, Zhang Y H, Zhang S N, Chen F S, Cheng Z W, Fu W, Han Y X, Li H, Li J F, Li Y, Liu P R, Ma X H, Tang Y J, Wang C B, Xie R J, Yan A L, Zhang Q, Jiang B W, Jin G, Li L H, Qiu X B, Su D T, Sun J N, Xu Z, Zhang S K, Zhang Z, Zhang N, Bi X Z, Cai Z M, He J W, Liu H Q, Zhu X C, Cheng H Q, Cui C Z, Fan D W, Hu H B, Huang M H, Jin C C, Li D Y, Pan H W, Wang W X, Xu Y F, Yang X, Zhang B, Zhang M, Zhang W D, Zhao D H, Bai M, Ji Z, Liu Y R, Ma F L, Su J, Tong J Z, Wang Y S, Zhao Z J, Feldman C, O’Brien P, Osborne J P, Willingale R, Burwitz V, Hartner G, Langmeier A, Müller T, Rukdee S, Schmidt T, Kuulkers E & Yuan W 2022 Astrophys. J. Lett. 9412

  • [1] 陳螢, 闫裕杰, 武岳彤, 王奇思. 铜氧化物超导体电荷序的共振X射线散射研究进展.  , doi: 10.7498/aps.74.20241402
    [2] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究.  , doi: 10.7498/aps.73.20240983
    [3] 刘超, 刘世龙, 杨毅, 冯晶, 李昱兆. 252Cf自发裂变K X射线发射与动能-电荷关系.  , doi: 10.7498/aps.73.20240563
    [4] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , doi: 10.7498/aps.70.20201685
    [5] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 周贤明, 肖国青. 不同电荷态的129Xeq+激发Au的X射线发射研究.  , doi: 10.7498/aps.64.053201
    [6] 石红, 田立成, 杨生胜. 嫦娥一号卫星太阳风离子探测器数据分析.  , doi: 10.7498/aps.63.069601
    [7] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究.  , doi: 10.7498/aps.59.4584
    [8] 袁永腾, 郝轶聃, 赵宗清, 侯立飞, 缪文勇. 空间电荷效应对X射线条纹相机动态范围影响的研究.  , doi: 10.7498/aps.59.6963
    [9] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , doi: 10.7498/aps.55.2221
    [10] 杨朝文, 缪竞威, 王广林, 刘晓东, 师勉恭. MeV氢微团簇离子与固体介质的电荷交换.  , doi: 10.7498/aps.55.5810
    [11] 郭冠军, 苏 林, 毕思文. 风成海面的极化辐射.  , doi: 10.7498/aps.54.2448
    [12] 杨百方, 缪竞威, 杨朝文, 师勉恭, 唐阿友, 刘晓东. H3+团簇离子与固体相互作用.  , doi: 10.7498/aps.51.55
    [13] 成金秀, 缪文勇, 孙可熙, 王红斌, 杨家敏, 曹磊峰, 温天舒, 陈正林, 杨存榜, 江少恩, 崔延莉, 汤小青, 于艳宁, 陈久森. X射线辐射输运分解实验研究.  , doi: 10.7498/aps.49.282
    [14] 徐章程, 郭常霖, 赵宗彦, 徐家跃, 周圣明, 戚泽明, 深町共荣, 根岸利一郎, 中岛哲夫. 测定温度因子的共振X射线动力学衍射法.  , doi: 10.7498/aps.47.1520
    [15] 刘胜侠. HT-7质能分辨电荷交换中性粒子分析.  , doi: 10.7498/aps.47.1118
    [16] 刘胜侠. HT-6M中性注入加热电荷交换能谱分析.  , doi: 10.7498/aps.45.449
    [17] 王炎森, 潘立民, 黄发泱, 方渡飞, 汤家镛, 杨福家. 铯离子/原子与金属表面电荷交换的计算.  , doi: 10.7498/aps.43.1950
    [18] 金春林, 黎忠, 臧德鸿, 叶慧, 汤家镛, 杨福家. 碱金属原子与W,Pt表面的电荷交换.  , doi: 10.7498/aps.42.1410
    [19] 刘强, 王建中, 徐向东, 陈学俊. 指数变分方法应用于电荷交换反应.  , doi: 10.7498/aps.40.1590
    [20] 古元新, 葛培文, 赵雅琴, 胡伯清, 吴兰生, 傅全贵. X射线形貌法观察空间电荷缀饰的α—LiIO3单晶的缺陷.  , doi: 10.7498/aps.29.711
计量
  • 文章访问数:  109
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-13

/

返回文章
返回
Baidu
map