Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism characteristics and sensing-storage-computing function of PtSe2 photosynaptic devices based on negative photoconductivity effect

Liang Bujia Wei Bo Kang Yan Dou Shuqing Xia Yongshun Guo Baojung Cui Huanqing Li Jia Yang Xiaokuo

Citation:

Mechanism characteristics and sensing-storage-computing function of PtSe2 photosynaptic devices based on negative photoconductivity effect

Liang Bujia, Wei Bo, Kang Yan, Dou Shuqing, Xia Yongshun, Guo Baojung, Cui Huanqing, Li Jia, Yang Xiaokuo
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Machine vision, serving as the "eyes" of artificial intelligence (AI), is one of the key windows for AI to acquire external information. However, traditional machine vision relies on the Von Neumann architecture, where sensing, storage, and processing are separated. This architecture necessitates constant data transfer between different units, inevitably leading to high power consumption and latency. To address these challenges, A PtSe2 photosynaptic device with negative light response was prepared. The device showed an inhibitory postsynaptic current (IPSC) under light pulse stimulation, and achieved optically tunable synaptic behaviors, including double pulse facilitation (PPD), short-range plasticity (STP), and long-range plasticity (LTP). In addition, the device exhibits dependence on light duration, and the image in-situ sensing and storage functions are demonstrated and verified using a 3×3 sensor array. By using 28×28 device array combined with artificial neural network (ANN), the integrated perception-storage-preprocessing function of visual information is realized. The experimental results show that the image after preprocessing (denoising) reaches 91% accuracy after 100 epochs training. Finally,lasers with two representative wavelengths of 405 and 532 were chosen as the light sources in the experiment, and the I-V characteristic curves changes most under the blue light pulse of 450 nm, which is because the blue light has higher photon energy to produce negative light effect. Based on the different photocurrent of the device responding to different wavelengths of light, the photoelectric synaptic logic gates 'NOR','NAND' and 'XOR' are established, which enables image processing functions such as dilation, erosion and difference recognition. The device's power consumption is calculated to be 0.111nJ per spike. The research results show great potential to provide simplified information processing and effectively promote the application of negative photoconductivity of PtSe2, which should help advance more integrated and efficient NVS.
  • [1]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong HP, Chai Y 2019Nat Nan-otechnol 14776

    [2]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020Nature 579 62.

    [3]

    Wang G Z, Wang R B, Kong W Z, Zhang J H 2018Cognitive Neurodynamics 12615

    [4]

    Wei, B, Chen Y B, Han X T, Kang Y, Liang B J, Li C, Yang X K, Liang F, Peng Y X 2025Sci. China Inf. Sci 68

    [5]

    Choi C, Leem J, Kim M, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S, Kim D H 2020Nat Commun 1 1

    [6]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2020ACS Nano 15 1497

    [7]

    Chen Y B, Huang Y J, Zeng J W, Kang Y, Tan Y L, Xie X N, Wei B, Li C, Liang F, Jiang T 2023ACS Appl Mater Interfaces 15 58631

    [8]

    Li S Y, Li J T, Zhou K, Yan Y, Ding G L, Han S T, Zhou Y 2024Phys Mater 7032002

    [9]

    Lian H X, Liao Q F, Yang B D, Zhai Y B, Han S T, Zhou Y 2021Mater. Chem. C 9 640

    [10]

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhuge F 2022Acta Phys. Sin. 71 148505[沈柳枫,胡令祥,康逢文,叶羽敏,诸葛飞2022 71 148505]

    [11]

    Kang Y, Chen Y B, Tan Y L, Hao H, Li C, Xie X N, Hua W H, Jiang T 2023Journal of Materiomics 9 787

    [12]

    Lee G, Baek J-H, Ren F, Pearton S, Lee G H, Kim J 2021Small 17 2100640

    [13]

    Sun L F, Wang W, Yang H J 2020Advanced Intelligent Systems 2 1900167

    [14]

    Zhao M Y, Hao Y R, Zhang C, Zhai R L, Liu B Q, Liu W C, Wang C 2022Crystals 12 1087

    [15]

    Li C, Yang D L, Sun L F 2022Acta Phys. Sin. 71218504[李策,杨栋梁,孙林锋2022 71 218504]

    [16]

    Li Z C, Wang H L, Wang H P, Li J, Qing F Z, Li X S, Xie D, Zhu H W 2024Nano Res. 16 10189

    [17]

    Wang Y, Liu E F, Gao A Y, Cao T J, Long M S, Pan C, Zhang L L, Zeng J W, Wang C Y, Hu W D, Liang S J, Miao F 2018 ACS Nano 12 9513

    [18]

    Nakanishi H, Bishop K J M, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009Nature 460 371

    [19]

    Wei P C, Chattopadhyay S, Yang M D, Tong S C, Shen J L, Lu C Y, Shih H C, Chen L C, Chen K H 2010Phys. Rev. B 81045306

    [20]

    Ding L W, Liu N S, Li L Y, Wei X, Zhang X H, Su J, Rao J Y, Yang C X, Li W Z, Wang J B, Gu H S, Gao Y H 2015Adv. Mater. 27 3525

    [21]

    Guo N, Hu W D, Liao L, Yip S P, Ho J C, Miao J S, Zhang Z, Zou J, Jiang T, Wu S W, Chen X S, Lu W 2014Adv. Mater. 268203

    [22]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014Phys.Rev. Lett. 113166801.

    [23]

    Yang Y M, Peng X Y, Kim H S, Kim T, Jeon S, Kang H K, Choi W, Song J D, Doh Y J, Yu D 2015Nano Lett. 155875

    [24]

    Zhao Y D, Qiao J S, Yu Z H, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X R, Ji W, Chai Y 2017Adv. Mater. 291604230

    [25]

    Hu X, Zhang H M, Liu Y W, Zhang S M, Sun Y Y, Guo Z X, Sheng Y C, Wang X D, Luo C, Wu X, Wang J L, Hu W D, Xu Z H, Sun Q Q, Zhou P, Shi J, Sun Z Z, Zhang D W, Bao W Z 2019Adv. Funct. Mater. 29 1805614

    [26]

    Choi C, Choi M K, Liu S Y, Kim M, Park O K, Im C, Kim J, Qin X L, Lee G J, Cho K W, Kim M, Joh E, Lee J, Son D, Kwon S H, Jeon N L, Song Y M, Lu N, Kim D H 2017Nat. Commun. 8

    [27]

    Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T 2014Proc IEEE 102 1470

    [28]

    Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A, Alexe M 2020ACS Nano 14 746

    [29]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591

    [30]

    G George A, Fistul M V, Gruenewald M, Kaiser D, Lehnert T, Mupparapu R, Neumann C, Hubner U, Schaal M, Masurkar N, Arava L M R, Staude I, Kaiser U, Fritz T, Turchanin A 2021npj 2D Mater Appl 5

    [31]

    CHANG T, JO S-H, LU W 2011 ACS Nano 5 7669

    [32]

    Li D Y, Li C, Ilyas N,Jiang X D, Liu F C, Gu D E, Xu M, Jiang Y D, Li W 2020 Adv Intelligent System 2

    [33]

    de Ronde W, ten Wolde P R, Mugler A 2012Biophys. J. 103 1097

    [34]

    Deng Y, Liu S, Ma X, Guo S, Zhai B, Zhang Z, Li M, Yu Y, Hu W, Yang H, Kapitonov Y, Han J, Wu J, Li Y, Zhai T 2024Adv. Mater. 36230940

    [35]

    Sun Y L, Qian L, Xie D, Lin Y X, Sun M X, Li W W, Ding L M, Ren T L, Palacios T 2019Adv. Funct. Mater. 291902538

    [36]

    Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh M R, De Silva T, Yu N N, Adachi M M 2021ACS Appl. Mater. Interfaces 13 45843

    [37]

    Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L, Shen G Z 2021Adv. Funct. Mater. 312101201

  • [1] Yang Wei-Tao, Hu Zhi-Liang, He Huan, Mo Li-Hua, Zhao Xiao-Hong, Song Wu-Qing, Yi Tian-Cheng, Liang Tian-Jiao, He Chao-Hui, Li Yong-Hong, Wang Bin, Wu Long-Sheng, Liu Huan, Shi Guang. Neutron induced single event effects on near-memory computing architecture AI chips. Acta Physica Sinica, doi: 10.7498/aps.73.20240430
    [2] Li Yan, Chen Xin-Li, Wang Wei-Sheng, Shi Zhi-Wen, Zhu Li-Qiang. Egg shell membrane based electrolyte gated oxide neuromorphic transistor. Acta Physica Sinica, doi: 10.7498/aps.72.20230411
    [3] Wang Shi-Chang, Lu Zhen-Zhou, Liang Yan, Wang Guang-Yi. Neuromorphic behaviors of N-type locally-active memristor. Acta Physica Sinica, doi: 10.7498/aps.71.20212017
    [4] Li Ce, Yang Dong-Liang, Sun Lin-Feng. Research progress of neuromorphic devices based on two-dimensional layered materials. Acta Physica Sinica, doi: 10.7498/aps.71.20221424
    [5] Zhu Jia-Xue, Zhang Xu-Meng, Wang Rui, Liu Qi. Flexible memristive spiking neuron for neuromorphic sensing and computing. Acta Physica Sinica, doi: 10.7498/aps.71.20212323
    [6] Chen Yang-Yang, He Yu-Hui, Miao Xiang-Shui, Yang Dao-Hong. 3D-NAND flash memory based neuromorphic computing. Acta Physica Sinica, doi: 10.7498/aps.71.20220974
    [7] Jiang Zi-Han, Ke Shuo, Zhu Ying, Zhu Yi-Xin, Zhu Li, Wan Chang-Jin, Wan Qing. Flexible neuromorphic transistors and their biomimetric sensing application. Acta Physica Sinica, doi: 10.7498/aps.71.20220308
    [8] Jiang Bi-Yi, Zhou Fei-Chi, Chai Yang. Application of neuromorphic resistive random access memory in image processing. Acta Physica Sinica, doi: 10.7498/aps.71.20220463
    [9] Shen Liu-Feng, Hu Ling-Xiang, Kang Feng-Wen, Ye Yu-Min, Zhuge Fei. Optoelectronic neuromorphic devices and their applications. Acta Physica Sinica, doi: 10.7498/aps.71.20220111
    [10] Zhang Yu-Qi, Wang Jun-Jie, Lü Zi-Yu, Han Su-Ting. Multimode modulated memristors for in-sensor computing system. Acta Physica Sinica, doi: 10.7498/aps.71.20220226
    [11] Wang Tong, Wen Juan, Lü Kang, Chen Jian-Zhong, Wang Liang, Guo Xin. Bio-inspired sensory systems with integrated capabilities of sensing, data storage, and processing. Acta Physica Sinica, doi: 10.7498/aps.71.20220281
    [12] Shan Xuan-Yu, Wang Zhong-Qiang, Xie Jun, Zheng Jia-Hui, Xu Hai-Yang, Liu Yi-Chun. Recent progress in optoelectronic memristive devices for in-sensor computing. Acta Physica Sinica, doi: 10.7498/aps.71.20220350
    [13] Ren Kuan, Zhang Ke-Jia, Qin Xi-Zi, Ren Huan-Xin, Zhu Shou-Hui, Yang Feng, Sun Bai, Zhao Yong, Zhang Yong. Research progress of neuromorphic computation based on memcapacitors. Acta Physica Sinica, doi: 10.7498/aps.70.20201632
    [14] Li Dan-Yang, Han Xu, Xu Guang-Yuan, Liu Xiao, Zhao Xiao-Jun, Li Geng-Wei, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Bi2O2Se photoconductive detector with low power consumption and high sensitivity. Acta Physica Sinica, doi: 10.7498/aps.69.20201044
    [15] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, doi: 10.7498/aps.68.20191023
    [16] Xu Jia, Dong Zhan-Min, Li Yi, Sun Jia-Lin, Sun Hong-San. Fabrication, temperature-conductance and photoconductance characteristics of the macroscopic-long Ag2S nanowire bundle. Acta Physica Sinica, doi: 10.7498/aps.60.077304
    [17] Shi Wei, Ma Xiang-Rong, Xue Hong. Transient thermal effect of semi-insulating GaAs photoconductive switch. Acta Physica Sinica, doi: 10.7498/aps.59.5700
    [18] Yang Shao-Peng, Zheng Hong-Fang, Li Chun-Lei, Fu Guang-Sheng, Li Xiao-Wei, Xu Chun-Hua, Li Jin-Pei. Investigation of decay characteristics of photoelectrons in nanoparticales of cubic AgBr sensitized by NiS. Acta Physica Sinica, doi: 10.7498/aps.55.2144
    [19] Wang Yi, Zhai Hong-Chen, Mu Guo-Guang. Fuzzy matching of images based on shape description matrix. Acta Physica Sinica, doi: 10.7498/aps.54.1965
    [20] Li Xiao-Wei, Li Xin-Zheng, Jiang Xiao-Li, Yu Wei, Tian Xiao-Dong, Yang Shao-Peng, Fu Guang-Sheng. The electron trap effect of the sulfur + gold sensitization center on the photoelectron behaviors. Acta Physica Sinica, doi: 10.7498/aps.53.2019
Metrics
  • Abstract views:  117
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  14 June 2025

/

返回文章
返回
Baidu
map