-
脑启发神经形态计算系统有望从根本上突破传统冯·诺依曼计算机系统架构瓶颈, 极大程度地提升数据处理速度和能效. 新型神经形态器件是构建高能效神经形态计算的重要硬件基础. 光电忆阻器作为新兴的纳米智能器件, 因具备整合光学感知、信息存储和逻辑计算等功能特性, 被认为是发展类脑视觉系统的重要备选. 本文将综述面向感存算功能一体化的光电忆阻器研究进展, 包括光电忆阻材料与机制、光电忆阻器件与特性、感存算一体化功能及应用等. 具体将根据机制分类介绍光子-离子耦合型和光子-电子耦合型光电忆阻材料, 根据光电忆阻特性调节方式介绍光电调制型和全光调制型光电忆阻器件, 根据感存算一体化功能介绍其在认知功能模拟、光电逻辑运算、神经形态视觉功能、动态探测与识别等方面的应用. 最后总结光电忆阻器的主要优势以及所面临的挑战, 并展望光电忆阻器的未来发展.Neuromorphic computing system, inspired by human brain, has the capability of breaking through the bottlenecks of conventional von Neumann architecture, which can improve the energy efficiency of data processing. Novel neuromorphic electronic components are the hardware foundation of efficient neuromorphic computation. Optoelectronic memristive device integrates the functions of sensing, memorizing and computing and is considered as a promising hardware candidate for neuromorphic vision. Herein, the recent research progress of optoelectronic memristive device for in-sensor computing are reviewed, including optoelectronic materials and mechanism, optoelectronic memristive device/characteristics as well as functionality and application of in-sensor computing. We first review the optoelectronic materials and corresponding memristive mechanism, including photon-ion coupling and photon-electron coupling type. Then optoelelctronic and all-optical modulated memristive device are introduced according to the modulation mode. Moreover, we exhibit the applications of optoelectronic device in cognitive function simulation, optoelectronic logic operation, neuromorphic vision, object tracking, etc. Finally, we summarize the advantages/challenges of optoelectronic memristor and prospect the future development.
[1] Hasegawa T, Terabe K, Tsuruoka T, Aono M 2012 Adv. Mater. 24 252
Google Scholar
[2] Lee J, Lu W D 2018 Adv. Mater. 30 1702770
Google Scholar
[3] Cheng Z G, Rios C, Pernice W H P, Wright C D, Bhaskaran H 2017 Sci. Adv. 3 e1700160
Google Scholar
[4] Xu W T, Cho H, Kim Y H, Kim Y T, Wolf C, Park C G, Lee T W 2016 Adv. Mater. 28 5916
Google Scholar
[5] Gholipour B, Bastock P, Craig C, Khan K, Hewak D, Soci C 2015 Adv. Optical Mater. 3 635
Google Scholar
[6] Mao J Y, Zhou L, Zhu X, Zhou Y, HanS T 2019 Adv. Optical Mater. 7 1900766
Google Scholar
[7] Chua L 1971 IEEE Trans. Circuit Theory 18 507
Google Scholar
[8] Wang Z, Zeng T, Ren Y, Lin Y, Xu H, Zhao X, Liu Y, Ielmini D 2020 Nat. Commun. 11 1510
Google Scholar
[9] Jo S, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297
Google Scholar
[10] Sun L F, Wang Z R, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B S, Yang H 2021 Sci. Adv. 7 eabg1455
Google Scholar
[11] Lin Y, Zhang X, Shan X, Zeng T, Zhao X, Wang Z, Kang Z, Xu H, Liu Y 2020 J. Mater. Chem. C 8 14789
Google Scholar
[12] Kim S J, Kim S B, Jang H W 2021 Iscience 24 101889
Google Scholar
[13] Milo V, Malavena G, Monzio Compagnoni C, Ielmini D 2020 Material 13 166
Google Scholar
[14] Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y, Li R 2017 ACS Nano 11 11298
Google Scholar
[15] Gao S, Liu G, Yang H L, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R 2019 ACS Nano 13 2634
Google Scholar
[16] Zhao X, Wang Z, Xie Y, Xu H, Zhu J, Zhang X, Liu W, Yang G, Ma J, Liu Y 2018 Small 14 1801325
Google Scholar
[17] Jaafar A H, Gray R J, Verrelli E, O’Neill M, Kelly S M, Kemp N T 2017 Nanoscale 9 17091
Google Scholar
[18] Zhao X, Wang Z, Li W, Sun S, Xu H, Zhou P, Xu J, Lin Y, Liu Y 2020 Adv. Funct. Mater. 30 1910151
Google Scholar
[19] Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S, Mayes E, Kuriakose S, Nawaz S, Spencer S, Chen H, Bhaskaran M, Sriram S, Walia S 2021 Adv. Mater. 33 2004207
Google Scholar
[20] Wang Z, Xu H, Li X, Yu H, Liu Y, Zhu X 2012 Adv. Funct. Mater. 22 2759
Google Scholar
[21] Mu B, Guo L, Liao J, Xie P, Ding G, Lv Z, Zhou Y, Han S, YanY 2021 Small 17 2103837
Google Scholar
[22] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591
Google Scholar
[23] Wan C, Zhu L, Liu Y, Feng P, Liu Z, Cao H, Xiao P, Shi Y, Wan Q 2016 Adv. Mater. 28 3557
Google Scholar
[24] Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22
Google Scholar
[25] Hu D, Yang R, Jiang L, Guo X 2018 ACS Appl. Mater. Interfaces 10 6463
Google Scholar
[26] Chen S, Lou Z, Chen D, Shen G 2018 Adv. Mater. 30 1705400
Google Scholar
[27] Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875
Google Scholar
[28] Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118
Google Scholar
[29] Carrara S 2021 IEEE Sens. J 21 12370
Google Scholar
[30] Zhou F, Zhou Z, Chen J, Choy T, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H, Chai Y 2019 Nat. Nanotechnol. 14 776
Google Scholar
[31] Zhou Z, Pei Y, Zhao J, Fu G, Yan X 2021 Appl. Phys. Lett. 118 191103
Google Scholar
[32] Ling H, Tan K, Fang Q, Xu X, Chen H, Li W, Liu Y, Wang L, Yi M, Huang R, Qian Y, Xie L, Huang W 2017 Adv. Electron. Mater. 3 1600416
Google Scholar
[33] Wang S, Fan W, Liu Z, Yu A, Jiang X 2018 J. Mater. Chem. C 6 191
Google Scholar
[34] Tsuruoka T, Terabe K, Hasegawa T, Valov I, Waser R, Aono M 2012 Adv. Funct. Mater. 22 70
Google Scholar
[35] Deb S, Chopoorian J 1966 J. Appl. Phys. 37 4818
Google Scholar
[36] Natansohn A, Rochon P 2002 Chem. Rev. 102 4139
Google Scholar
[37] Tsai H, Asadpour R, Blancon J, Stoumpos C, Durand O, Strzalka J, Chen B, Verduzco R, Ajayan P, Tretiak S, Even J, Alam M, Kanatzidis M, Nie W, Mohite A 2018 Science 360 67
Google Scholar
[38] Liu Y, Ievlev A V, Collins L, Borodinov N, Belianinov A, Keum J K, Wang M, Ahmadi M, Jesse S, Xiao K, Sumpter B G, Hu B, Kalinin S V, Ovchinnikova O S 2019 Adv. Opt. Mater. 7 1901451
Google Scholar
[39] Hossain A, Bandyopadhyay P, Karmakar A, Ullah A, Manavalan R, Sakthipandi K, Alhokbany K, Alshehri S, Ahmed J 2021 Ceram. Int. 48 7325
[40] Walsh A, Stranks S D 2018 ACS Energy Lett. 3 1983
Google Scholar
[41] Guan X, Hu W, Haque Md A, Wei N, Liu Z, Chen A, Wu T 2018 Adv. Funct. Mater. 28 1704665
Google Scholar
[42] Yang J M, Kim S G, Seo J Y, Cuhadar C, Son D Y, Lee D, Park N G 2018 Adv. Electron. Mater 4 1800190
Google Scholar
[43] Yang K, Li F, Veeramalai C P, Guo T 2017 Appl. Phys. Lett. 110 083102
Google Scholar
[44] Zhao X, Xu H, Wang Z, Lin Y, Liu Y 2019 InfoMat 1 183
[45] Ahmadi M, Wu T, Hu B 2017 Adv. Mater. 29 1605242
Google Scholar
[46] Hu J, Yan L, You W 2018 Adv. Mater. 30 1802041
Google Scholar
[47] Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv Mater. 30 1870317
Google Scholar
[48] Manjappa M, Srivastava Y K, Solanki A, Kumar A, Sum T C, Singh R 2017 Adv. Mater. 29 1605881
Google Scholar
[49] Zhu X, Lu W D 2018 ACS Nano 12 1242
[50] Zhu X, Lee J, Lu W D 2017 Adv. Mater. 29 1700527
Google Scholar
[51] Ham S, Choi S, Cho H, Na S, Wang G 2019 Adv. Funct. Mater. 29 1806646
Google Scholar
[52] Skorodumova N, Simak S, Lundqvist B, Abrikosov I, Johansson B 2002 Phys. Rev. Lett. 89 166601
Google Scholar
[53] Pan Z, Peng W, Li F, He Y 2018 Adv. Funct. Mater. 28 1706897
Google Scholar
[54] Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X, Yang D 2018 Nano Energy 52 422
Google Scholar
[55] Ma F, Zhu Y, Xu Z, Liu Y, Zheng X, Ju S, Li Q, Ni Z, Hu H, Chai Y, Wu C, Kim T W, Li F 2020 Adv. Funct. Mater. 30 1908901
Google Scholar
[56] He H, Yang R, Zhou W, Huang H-M, Xiong J, Gan L, Zhai T, Guo X 2018 Small 14 1800079
Google Scholar
[57] Yang J, Pickett M, Li X, Ohlberg D, Stewart D, Williams R 2008 Nat. Nanotechnol. 3 429
Google Scholar
[58] You T, Du N, Slesazeck S, Mikolajick T, Li G, Burger D, Skorupa I, Stocker H, Abendroth B, Beyer A, Volz K, Schmidt O, Schmidt H 2014 ACS Appl. Mater. Interfaces 6 19758
Google Scholar
[59] Zhai Y, Yang X, Wang F, Li Z, Ding G, Qiu Z, Wang Y, Zhou Y, Han S T 2018 Adv. Mater. 30 1803563
Google Scholar
[60] Yang R, Huang H, Hong Q, Yin X, Tan Z, Shi T, Zhou Y, Miao X, Wang X, Mi S 2018 Adv. Funct. Mater. 28 1704455
Google Scholar
[61] Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y, Li R 2015 Adv. Mater. 27 2797
Google Scholar
[62] Zhou S, Ni Z, Ding Y, Sugaya M, Pi X, Nozaki T 2016 ACS Photonics 3 415
Google Scholar
[63] Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D 2017 ACS Nano 11 9854
Google Scholar
[64] Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B, Yang D 2016 Adv. Opt. Mater. 4 700
Google Scholar
[65] Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L, Zhang Y, Lee J, Akinwande D 2018 Nano Lett. 18 434
Google Scholar
[66] Zhou Y, Liu D, Wang J, Cheng Z, Liu L, Yang N, Liu Y, Xia T, Liu X, Zhang X, Ye C, Xu Z, Xiong W, Chu P, Yu X 2020 ACS Appl. Mater. Interface 12 25108
Google Scholar
[67] Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 2966
Google Scholar
[68] Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H, Lee Y H 2019 Adv. Mater. 31 807075
[69] Pei F, Yan L, Wu Z, Lu J, Zhao J, Chen J Liu Q, Yan X 2021 ACS Nano 15 17319
Google Scholar
[70] Wang Q S, Wen Y, Cai K M, Cheng R Q, Yin L, Zhang Y, Li J, Wang Z X, Wang F, Wang F M, Shifa T A, Jiang C, Yang H, He J 2018 Sci. Adv. 4 eaap7916
Google Scholar
[71] Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734
Google Scholar
[72] Miller D A B 2009 Proc. IEEE 97 1166
Google Scholar
[73] Lin Y, Wang Z, Zhang X, Zeng T, Bai L, Kang Z, Wang C, Zhao X, Xu H, Liu Y. 2020 NPG Asia Mater. 12 1
Google Scholar
[74] Hu L X, Yang J, Wang J R, Cheng P H, O. Chua L, Zhuge F 2020 Adv. Funct. Mater. 31 2005582
[75] Ahmed T, Balendhran S, Karim M N, Mayes E L H, Field M R, Ramanathan R, Singh M, Bansal V, Sriram S, Bhaskaran M, Walia S 2017 NPJ 2 D Mater. Appl. 1 18
Google Scholar
[76] Walia S, Sabri Y, Ahmed T, Field M R, Ramanathan R, Arash A, Bhargava S K, Sriram S, Bhaskaran M, Bansal V, Balendhran S 2017 2 D Mater. 4 015025
[77] Favron A, Gaufres E, Fossard F, Phaneuf-L'Heureux A L, Tang N Y W, Levesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R 2015 Nat. Mater. 14 826
Google Scholar
[78] Kuriakose S, Ahmed T, Balendhran S, Bansal V, Sriram S, Bhaskaran M, Walia S 2018 2D Mater. 5 032001
Google Scholar
[79] Utt K L, Rivero P, Mehboudi M, Harriss E O, Borunda M F, SanJuan A A P, Barraza-Lopez S. 2015 ACS Cent. Sci. 1 320
Google Scholar
[80] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T. J, Hersam M C 2014 Nano Lett. 14 6964
Google Scholar
[81] Ahmed T, Kuriakose S, Abbas S, Spencer M J S, Rahman M A, Tahir M, Lu Y R, Sonar P, Bansal V, Bhaskaran M, Sriram S, Walia S 2019 Adv. Funct. Mater. 29 1901991
Google Scholar
[82] Shan X Y, Zhao C Y, Wang X N, Wang Z Q, Lin Y, Zeng T, Zhao X N, Xu H Y, Zhang X T, Liu Y C 2021 Adv. Sci. 8 2104632
[83] Colton R J, Guzman A M, Rabalais J W 1978 ACC Chem. Res. 11 170
Google Scholar
[84] Zhu Y, Wu C, Xu Z, Liu Y, Hu H, Guo T, Kim T, Chai Y, Li F 2021 Nano Lett. 21 14
[85] Shan X, Wang Z, Lin Y, Zeng T, Zhao X, Xu H, Liu Y 2020 Adv. Electron. Mater. 6 2000536
Google Scholar
[86] Wang W, Gao S, Li Y, Yue W, Kan H, Zhang C, Lou Z, Wang L, Shen G 2021 Adv. Funct. Mater. 31 2101201
Google Scholar
[87] Yang L, Singh M, Shen S, Chih K, Liu S, Wu C, Chu C, Lin H 2020 Adv. Funct. Mater. 31 2008259
[88] Fanselow M, Poulos A A 2005 Rev. Psychol. 56 207
Google Scholar
[89] Liu L, Cheng Z Q, Jiang B, Liu Y X, Zhang Y L, Yang F, Wang J H, Yu X F, Chu P K, Ye C 2021 ACS Appl. Mater. Interfaces 13 30797
Google Scholar
[90] Li Y, Long S, Liu Q, Lv H, Liu M 2017 Small 13 1604306
Google Scholar
[91] Zhang K, Meng D, Bai F, Zhai J, Wang Z L 2020 Adv. Funct. Mater. 30 2002945
Google Scholar
[92] Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503
Google Scholar
[93] Nguyen D A, Jo Y, Tran T U, Jeong M S, Kim H, Im H 2021 Small Methods 5 2101303
Google Scholar
[94] Shepherd R K, Shivdasani M N, Nayagam D A, Williams C E, Blamey P J 2013 Trends Biotechnol. 31 562
Google Scholar
[95] Kolb H 2003 Am. Sci. 91 28
Google Scholar
[96] Brady T F, Konkle T, Alvarez G A, Oliva A 2008 Proc. Natl Acad. Sci. USA 105 14325
Google Scholar
[97] Wang G, Wang R, Kong W and Zhang J 2018 Analysis. Cogn. Neurodyn. 12 615
Google Scholar
[98] Zhou F, Chen J, Tao X, Wang, X and Chai Y 2019 Research 2019 9490413
[99] Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D, Himmel A, Aurisano A, Terao K, Wongjirad T 2018 Nature 560 41
Google Scholar
[100] Sze V, Then Y, Emer J, Suleiman A, Zhang Z 2017 IEEE Custom Integrated Circuits Conference (CICC) 1
[101] Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 1
Google Scholar
[102] Choi C, Leem J, Kim M S, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S W, Kim D H 2020 Nat. Commun. 11 1
Google Scholar
[103] McCollough C 1965 Science 149 1115
Google Scholar
[104] Huang X, Li Q Y, Shi W, Liu K, Zhang Y P, Liu Y W, Wei X F, Zhao Z Y, Guo Y L, Liu Y Q 2021 Small 17 2102820
Google Scholar
[105] Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y 2019 Joule 3 1140
Google Scholar
[106] Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P, Park J H 2018 Nat. Commun. 9 5106
Google Scholar
[107] Wang S, Wang C Y, Wang P F, Wang C, Li Z A, Pan C, Dai1 Y T, Gao A Y, Liu C, Liu J, Yang H F, Liu X W, Cheng B, Chen K J, Wang Z L, Watanabe K J, Taniguchi T, Liang S J, Miao F 2020 Natl. Sci. Rev. 7 1
Google Scholar
[108] Euler T, Haverkamp S and Schubert T 2014 Nat. Rev. Neurosci. 15 507
Google Scholar
[109] van Hateren J H, Lamb T D 2006 Neuroscience 7 34
[110] Wang Z, Li C, Lin P, Rao M Y, Nie Y Y, Song W H, Qiu Q R, Li Y N, Yan P, Strachan J P, Ge N, McDonald N, Wu Q, Hu M, Wu H Q, Williams R S, Xia Q F, Yang J J 2019 Nat. Mach. Intell. 1 434
Google Scholar
[111] Moon J, Ma W, Shin J H, Cai F X, Du C, Lee S H, Lu W D 2019 Nat. Electron. 2 480
Google Scholar
[112] Du C, Cai F, Zidan M A, Ma W, Lee S H, Lu W D 2017 Nat. Commun. 8 2204
Google Scholar
[113] Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2021 Nat. Nanotechnol. 17 27
[114] Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X, Zhang R 2017 2 D Mater. 4 035022
[115] Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J S, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS nano 15 17917
Google Scholar
[116] Xie D D, Yin K, Yang Z J, Huang H, Li X H, Shu Z W, Duan H G, He J, Jiang J 2022 Materials Horizons, 9 1448-1459
-
图 2 (a) MoOx光电阻变式存储器的结构示意图; (b) Pd/MoOx/ITO器件的脉冲开关特性; (c)器件阻变机制示意图[30]; (d)基于PDR1A材料光学忆阻器结构示意图; (e) ITO/ZnO/PDR1 A/Al结构器件的可逆电阻调制过程; (f) PDR1A分子化学结构的示意图[32]
Fig. 2. (a) Structural illustration of the MoOx ORRAM; (b) pulse-switching characteristics of Pd/MoOx/ITO device; (c) schematic of switching mechanism[30]; (d) schematic of PDR1A based optical memristor; (e) conductance modulation of ITO/ZnO/PDR1A/Al device; (f) schematic of the PDR1A molecules[32].
图 3 (a) 基于MAPbI3材料的平面结构器件示意图; (b) 光照抑制VI·/VI×形成加速VI·/VI×湮灭[49]; (c) MAPbI3忆阻器结构图; (d), (e) 光照强度对MAPbI3器件开启电压和过充电流的影响[18]; (f) Ag/CH3NH3PbI3 (OHP)/ITO结构光突触器件示意图; (g) 器件在光电脉冲刺激下的响应; (h) 响应幅值随照射时间、频率和强度的变化[51]
Fig. 3. (a) Schematic of MAPBI3 based planar device; (b) light illumination inhibits the formation and accelerate the annihilation of VI·/VI× [49]; (c) structural illustration of MAPbI3 based memristor; (d), (e) the variations of VForming and IOV (overshoot current) with light intensity[18]; (f) structural illustration of Ag/CH3NH3PbI3 (OHP)/ITO optoelectronic memristor; (g) current response under the stimulation of electrical and optical pulse; (h) current response depending on exposure time, frequency and intensity[51].
图 4 (a) ITO/CeO2–x/AlOy/Al结构光电突触示意图; (b) 器件阻变特性机制图[14]; (c) 生物突触和硅纳米晶器件结构图; (d) 硅纳米晶能带结构和载流子输运示意图[54]; (e) 光调制BP@PS忆阻器示意图; (f) BP@PS器件阻变机制的能带模型[66]; (g) 基于单层MoS2的忆阻突触器件; (h) MoS2/p-Si结阻变示意图[56]
Fig. 4. (a) Schematic diagram of optoelectronic synapse with ITO/CeO2–x/AlOy/Al structure; (b) schematic energy band diagram demonstrating memristive characteristics[14]; (c) schematic of biological synapse and Si-NC-based device; (d) schematic illustration of the band structure and charge carrier transport of Si NCs[54]; (e) schematic of light modulation BP@PS memristor; (f) energy band diagram explaining RS mechanism[66]; (g) schematic of memristive synapse based on monolayer MoS2; (h) schematic illustration of the resistive switching[56].
图 5 (a) 全无机钙钛矿基光电忆阻突触器件示意图; (b) 器件在紫外光下的光开关特性; (c) 器件在电学脉冲信号下的电导调制[55]; (d) Al/GO-TiO2/ITO存储器件结构图; (e) 紫外光照射对器件电初始化和阻变的影响; (f) 紫外照射时间对开关电压的调节[16]; (g) 生物突触及RGO/GO-NCQDs/石墨烯全碳器件示意图; (h) GO-NCQD复合材料的光致还原过程[73]
Fig. 5. (a) Structural diagram of all-inorganic perovskite optoelectronic synapses; (b) optical switching characteristics under UV light; (c) potentiation and depression behaviors under electrical stimulation[55]; (d) schematic illustration of Al/GO-TiO2/ITO memory device; (e), (f) the effect of UV irradiation time on forming (e) and switching voltages[16] (f); (g) schematic illustration of biological synapse and RGO/GO-NCQDs/graphene memristor; (h) photo-reduction process of GO-NCQDs film[73].
图 6 (a) Au/OD-IGZO/OR-IGZO/Pt结构的全光调控忆阻器件; (b)不同波长光照射下IGZO器件响应电流; (c) 光照强度对光关闭过程影响; (d) 光开启和光关闭特性; (e) 全光调制过程机制图[74]; (f) 基于BP材料的光电晶体管; (g), (h) 器件在280 nm和365 nm光脉冲下的响应电流; (i) 器件的长时增强和抑制特性[19]
Fig. 6. (a) Schematic diagram of the Au/OD-IGZO/OR-IGZO/Pt device structure; (b) current response depending on light of various wavelengths; (c) effect of power density on optical reset behavior; (d) reversible modulation of device conductance; (e) schematic illustrations of all-optically controlled device[74]; (f) schematic of BP based device; (g), (h) transient photocurrent under 280 nm and 365 nm illumination; (i) LTP and LTD behaviors under consecutive pulse[19].
图 7 (a) 基于Ag-TiO2材料的全光调控忆阻器件; (b), (c) 可见光和紫外光脉冲刺激下器件的电流响应; (d), (e) 光照强度和时间对器件电流的影响; (f) 全光可逆调制过程; (g), (h) 器件在光电信号刺激下的运行机制[82]
Fig. 7. (a) Fully light-modulated memristor based on Ag-TiO2 nanocomposite; (b), (c) transient photocurrent under the illumination of visible and UV light; (d), (e) the response current depending on irradiation time and intensity; (f) fully light-modulated behaviors; (g), (h) operating mechanism of the Ag-TiO2 based optoelectronic device[82].
图 8 (a) TiNxO2–x/MoS2异质结光电突触器件; (b) 单个光脉冲引起的增强过程; (c) 对脉冲促进(PPF)功能; (d), (e)不同光照强度和时间下器件的电导响应; (f) 连续光脉冲引起的电导变化[86]
Fig. 8. (a) Structural illustration of TiNxO2–x/MoS2 heterostructure-based optoelectronic synapse; (b) optical potentiation process; (c) paired pulse facilitation function; (d), (e) conductance response depending on the illumination intensity and duration; (f) transient response under consecutive optical pulses[86].
图 9 (a) Al/TiS3/ITO器件结构示意图; (b) 不同波长光照射下的电流-电压曲线; (c) 光电信号下的器件电导变化; (d) 巴普洛夫狗实验中经典条件反射模拟[89]
Fig. 9. (a) Sandwich-like structure of the Al/TiS3/ITO memristor; (b) RS behaviors modulated by different wavelengths; (c) conductance change under optical and electric signals; (d) simulation of classical conditioning in Pavlov’s dog experiment[89].
图 11 (a) 基于光电忆阻器的图像记忆及预处理功能; (b) 神经形态视觉系统图像识别模拟[30]; (c) 突触光电晶体管光照示意图; (d) 未知彩色光识别功能[104]
Fig. 11. (a) Image memorization and preprocessing functions based on optoelectronic memristor; (b) simulation of image recognition in artificial neural network[30]; (c) device structure of 2D perovskite/organic heterojunction synaptic phototransistor; (d) simulating the recognition of unknow light[104].
图 12 (a) 人类视觉神经系统及h-BN/WSe2基突触器件示意图; (b) 不同光照条件下的长时增强和抑制行为; (c) 人工视觉神经网络训练测试实例; (d) 不同训练次数后的识别率[106]
Fig. 12. (a) Schematic illustration of the human optical nerve system; (b) schematic illustration of the human optical nerve system; (c) dataset consisted of colored and color-mixed number for training and testing; (d) dependence of recognition rate on training epochs[106].
-
[1] Hasegawa T, Terabe K, Tsuruoka T, Aono M 2012 Adv. Mater. 24 252
Google Scholar
[2] Lee J, Lu W D 2018 Adv. Mater. 30 1702770
Google Scholar
[3] Cheng Z G, Rios C, Pernice W H P, Wright C D, Bhaskaran H 2017 Sci. Adv. 3 e1700160
Google Scholar
[4] Xu W T, Cho H, Kim Y H, Kim Y T, Wolf C, Park C G, Lee T W 2016 Adv. Mater. 28 5916
Google Scholar
[5] Gholipour B, Bastock P, Craig C, Khan K, Hewak D, Soci C 2015 Adv. Optical Mater. 3 635
Google Scholar
[6] Mao J Y, Zhou L, Zhu X, Zhou Y, HanS T 2019 Adv. Optical Mater. 7 1900766
Google Scholar
[7] Chua L 1971 IEEE Trans. Circuit Theory 18 507
Google Scholar
[8] Wang Z, Zeng T, Ren Y, Lin Y, Xu H, Zhao X, Liu Y, Ielmini D 2020 Nat. Commun. 11 1510
Google Scholar
[9] Jo S, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297
Google Scholar
[10] Sun L F, Wang Z R, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B S, Yang H 2021 Sci. Adv. 7 eabg1455
Google Scholar
[11] Lin Y, Zhang X, Shan X, Zeng T, Zhao X, Wang Z, Kang Z, Xu H, Liu Y 2020 J. Mater. Chem. C 8 14789
Google Scholar
[12] Kim S J, Kim S B, Jang H W 2021 Iscience 24 101889
Google Scholar
[13] Milo V, Malavena G, Monzio Compagnoni C, Ielmini D 2020 Material 13 166
Google Scholar
[14] Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y, Li R 2017 ACS Nano 11 11298
Google Scholar
[15] Gao S, Liu G, Yang H L, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R 2019 ACS Nano 13 2634
Google Scholar
[16] Zhao X, Wang Z, Xie Y, Xu H, Zhu J, Zhang X, Liu W, Yang G, Ma J, Liu Y 2018 Small 14 1801325
Google Scholar
[17] Jaafar A H, Gray R J, Verrelli E, O’Neill M, Kelly S M, Kemp N T 2017 Nanoscale 9 17091
Google Scholar
[18] Zhao X, Wang Z, Li W, Sun S, Xu H, Zhou P, Xu J, Lin Y, Liu Y 2020 Adv. Funct. Mater. 30 1910151
Google Scholar
[19] Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S, Mayes E, Kuriakose S, Nawaz S, Spencer S, Chen H, Bhaskaran M, Sriram S, Walia S 2021 Adv. Mater. 33 2004207
Google Scholar
[20] Wang Z, Xu H, Li X, Yu H, Liu Y, Zhu X 2012 Adv. Funct. Mater. 22 2759
Google Scholar
[21] Mu B, Guo L, Liao J, Xie P, Ding G, Lv Z, Zhou Y, Han S, YanY 2021 Small 17 2103837
Google Scholar
[22] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591
Google Scholar
[23] Wan C, Zhu L, Liu Y, Feng P, Liu Z, Cao H, Xiao P, Shi Y, Wan Q 2016 Adv. Mater. 28 3557
Google Scholar
[24] Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22
Google Scholar
[25] Hu D, Yang R, Jiang L, Guo X 2018 ACS Appl. Mater. Interfaces 10 6463
Google Scholar
[26] Chen S, Lou Z, Chen D, Shen G 2018 Adv. Mater. 30 1705400
Google Scholar
[27] Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875
Google Scholar
[28] Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118
Google Scholar
[29] Carrara S 2021 IEEE Sens. J 21 12370
Google Scholar
[30] Zhou F, Zhou Z, Chen J, Choy T, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H, Chai Y 2019 Nat. Nanotechnol. 14 776
Google Scholar
[31] Zhou Z, Pei Y, Zhao J, Fu G, Yan X 2021 Appl. Phys. Lett. 118 191103
Google Scholar
[32] Ling H, Tan K, Fang Q, Xu X, Chen H, Li W, Liu Y, Wang L, Yi M, Huang R, Qian Y, Xie L, Huang W 2017 Adv. Electron. Mater. 3 1600416
Google Scholar
[33] Wang S, Fan W, Liu Z, Yu A, Jiang X 2018 J. Mater. Chem. C 6 191
Google Scholar
[34] Tsuruoka T, Terabe K, Hasegawa T, Valov I, Waser R, Aono M 2012 Adv. Funct. Mater. 22 70
Google Scholar
[35] Deb S, Chopoorian J 1966 J. Appl. Phys. 37 4818
Google Scholar
[36] Natansohn A, Rochon P 2002 Chem. Rev. 102 4139
Google Scholar
[37] Tsai H, Asadpour R, Blancon J, Stoumpos C, Durand O, Strzalka J, Chen B, Verduzco R, Ajayan P, Tretiak S, Even J, Alam M, Kanatzidis M, Nie W, Mohite A 2018 Science 360 67
Google Scholar
[38] Liu Y, Ievlev A V, Collins L, Borodinov N, Belianinov A, Keum J K, Wang M, Ahmadi M, Jesse S, Xiao K, Sumpter B G, Hu B, Kalinin S V, Ovchinnikova O S 2019 Adv. Opt. Mater. 7 1901451
Google Scholar
[39] Hossain A, Bandyopadhyay P, Karmakar A, Ullah A, Manavalan R, Sakthipandi K, Alhokbany K, Alshehri S, Ahmed J 2021 Ceram. Int. 48 7325
[40] Walsh A, Stranks S D 2018 ACS Energy Lett. 3 1983
Google Scholar
[41] Guan X, Hu W, Haque Md A, Wei N, Liu Z, Chen A, Wu T 2018 Adv. Funct. Mater. 28 1704665
Google Scholar
[42] Yang J M, Kim S G, Seo J Y, Cuhadar C, Son D Y, Lee D, Park N G 2018 Adv. Electron. Mater 4 1800190
Google Scholar
[43] Yang K, Li F, Veeramalai C P, Guo T 2017 Appl. Phys. Lett. 110 083102
Google Scholar
[44] Zhao X, Xu H, Wang Z, Lin Y, Liu Y 2019 InfoMat 1 183
[45] Ahmadi M, Wu T, Hu B 2017 Adv. Mater. 29 1605242
Google Scholar
[46] Hu J, Yan L, You W 2018 Adv. Mater. 30 1802041
Google Scholar
[47] Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv Mater. 30 1870317
Google Scholar
[48] Manjappa M, Srivastava Y K, Solanki A, Kumar A, Sum T C, Singh R 2017 Adv. Mater. 29 1605881
Google Scholar
[49] Zhu X, Lu W D 2018 ACS Nano 12 1242
[50] Zhu X, Lee J, Lu W D 2017 Adv. Mater. 29 1700527
Google Scholar
[51] Ham S, Choi S, Cho H, Na S, Wang G 2019 Adv. Funct. Mater. 29 1806646
Google Scholar
[52] Skorodumova N, Simak S, Lundqvist B, Abrikosov I, Johansson B 2002 Phys. Rev. Lett. 89 166601
Google Scholar
[53] Pan Z, Peng W, Li F, He Y 2018 Adv. Funct. Mater. 28 1706897
Google Scholar
[54] Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X, Yang D 2018 Nano Energy 52 422
Google Scholar
[55] Ma F, Zhu Y, Xu Z, Liu Y, Zheng X, Ju S, Li Q, Ni Z, Hu H, Chai Y, Wu C, Kim T W, Li F 2020 Adv. Funct. Mater. 30 1908901
Google Scholar
[56] He H, Yang R, Zhou W, Huang H-M, Xiong J, Gan L, Zhai T, Guo X 2018 Small 14 1800079
Google Scholar
[57] Yang J, Pickett M, Li X, Ohlberg D, Stewart D, Williams R 2008 Nat. Nanotechnol. 3 429
Google Scholar
[58] You T, Du N, Slesazeck S, Mikolajick T, Li G, Burger D, Skorupa I, Stocker H, Abendroth B, Beyer A, Volz K, Schmidt O, Schmidt H 2014 ACS Appl. Mater. Interfaces 6 19758
Google Scholar
[59] Zhai Y, Yang X, Wang F, Li Z, Ding G, Qiu Z, Wang Y, Zhou Y, Han S T 2018 Adv. Mater. 30 1803563
Google Scholar
[60] Yang R, Huang H, Hong Q, Yin X, Tan Z, Shi T, Zhou Y, Miao X, Wang X, Mi S 2018 Adv. Funct. Mater. 28 1704455
Google Scholar
[61] Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y, Li R 2015 Adv. Mater. 27 2797
Google Scholar
[62] Zhou S, Ni Z, Ding Y, Sugaya M, Pi X, Nozaki T 2016 ACS Photonics 3 415
Google Scholar
[63] Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D 2017 ACS Nano 11 9854
Google Scholar
[64] Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B, Yang D 2016 Adv. Opt. Mater. 4 700
Google Scholar
[65] Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L, Zhang Y, Lee J, Akinwande D 2018 Nano Lett. 18 434
Google Scholar
[66] Zhou Y, Liu D, Wang J, Cheng Z, Liu L, Yang N, Liu Y, Xia T, Liu X, Zhang X, Ye C, Xu Z, Xiong W, Chu P, Yu X 2020 ACS Appl. Mater. Interface 12 25108
Google Scholar
[67] Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 2966
Google Scholar
[68] Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H, Lee Y H 2019 Adv. Mater. 31 807075
[69] Pei F, Yan L, Wu Z, Lu J, Zhao J, Chen J Liu Q, Yan X 2021 ACS Nano 15 17319
Google Scholar
[70] Wang Q S, Wen Y, Cai K M, Cheng R Q, Yin L, Zhang Y, Li J, Wang Z X, Wang F, Wang F M, Shifa T A, Jiang C, Yang H, He J 2018 Sci. Adv. 4 eaap7916
Google Scholar
[71] Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734
Google Scholar
[72] Miller D A B 2009 Proc. IEEE 97 1166
Google Scholar
[73] Lin Y, Wang Z, Zhang X, Zeng T, Bai L, Kang Z, Wang C, Zhao X, Xu H, Liu Y. 2020 NPG Asia Mater. 12 1
Google Scholar
[74] Hu L X, Yang J, Wang J R, Cheng P H, O. Chua L, Zhuge F 2020 Adv. Funct. Mater. 31 2005582
[75] Ahmed T, Balendhran S, Karim M N, Mayes E L H, Field M R, Ramanathan R, Singh M, Bansal V, Sriram S, Bhaskaran M, Walia S 2017 NPJ 2 D Mater. Appl. 1 18
Google Scholar
[76] Walia S, Sabri Y, Ahmed T, Field M R, Ramanathan R, Arash A, Bhargava S K, Sriram S, Bhaskaran M, Bansal V, Balendhran S 2017 2 D Mater. 4 015025
[77] Favron A, Gaufres E, Fossard F, Phaneuf-L'Heureux A L, Tang N Y W, Levesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R 2015 Nat. Mater. 14 826
Google Scholar
[78] Kuriakose S, Ahmed T, Balendhran S, Bansal V, Sriram S, Bhaskaran M, Walia S 2018 2D Mater. 5 032001
Google Scholar
[79] Utt K L, Rivero P, Mehboudi M, Harriss E O, Borunda M F, SanJuan A A P, Barraza-Lopez S. 2015 ACS Cent. Sci. 1 320
Google Scholar
[80] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T. J, Hersam M C 2014 Nano Lett. 14 6964
Google Scholar
[81] Ahmed T, Kuriakose S, Abbas S, Spencer M J S, Rahman M A, Tahir M, Lu Y R, Sonar P, Bansal V, Bhaskaran M, Sriram S, Walia S 2019 Adv. Funct. Mater. 29 1901991
Google Scholar
[82] Shan X Y, Zhao C Y, Wang X N, Wang Z Q, Lin Y, Zeng T, Zhao X N, Xu H Y, Zhang X T, Liu Y C 2021 Adv. Sci. 8 2104632
[83] Colton R J, Guzman A M, Rabalais J W 1978 ACC Chem. Res. 11 170
Google Scholar
[84] Zhu Y, Wu C, Xu Z, Liu Y, Hu H, Guo T, Kim T, Chai Y, Li F 2021 Nano Lett. 21 14
[85] Shan X, Wang Z, Lin Y, Zeng T, Zhao X, Xu H, Liu Y 2020 Adv. Electron. Mater. 6 2000536
Google Scholar
[86] Wang W, Gao S, Li Y, Yue W, Kan H, Zhang C, Lou Z, Wang L, Shen G 2021 Adv. Funct. Mater. 31 2101201
Google Scholar
[87] Yang L, Singh M, Shen S, Chih K, Liu S, Wu C, Chu C, Lin H 2020 Adv. Funct. Mater. 31 2008259
[88] Fanselow M, Poulos A A 2005 Rev. Psychol. 56 207
Google Scholar
[89] Liu L, Cheng Z Q, Jiang B, Liu Y X, Zhang Y L, Yang F, Wang J H, Yu X F, Chu P K, Ye C 2021 ACS Appl. Mater. Interfaces 13 30797
Google Scholar
[90] Li Y, Long S, Liu Q, Lv H, Liu M 2017 Small 13 1604306
Google Scholar
[91] Zhang K, Meng D, Bai F, Zhai J, Wang Z L 2020 Adv. Funct. Mater. 30 2002945
Google Scholar
[92] Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503
Google Scholar
[93] Nguyen D A, Jo Y, Tran T U, Jeong M S, Kim H, Im H 2021 Small Methods 5 2101303
Google Scholar
[94] Shepherd R K, Shivdasani M N, Nayagam D A, Williams C E, Blamey P J 2013 Trends Biotechnol. 31 562
Google Scholar
[95] Kolb H 2003 Am. Sci. 91 28
Google Scholar
[96] Brady T F, Konkle T, Alvarez G A, Oliva A 2008 Proc. Natl Acad. Sci. USA 105 14325
Google Scholar
[97] Wang G, Wang R, Kong W and Zhang J 2018 Analysis. Cogn. Neurodyn. 12 615
Google Scholar
[98] Zhou F, Chen J, Tao X, Wang, X and Chai Y 2019 Research 2019 9490413
[99] Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D, Himmel A, Aurisano A, Terao K, Wongjirad T 2018 Nature 560 41
Google Scholar
[100] Sze V, Then Y, Emer J, Suleiman A, Zhang Z 2017 IEEE Custom Integrated Circuits Conference (CICC) 1
[101] Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 1
Google Scholar
[102] Choi C, Leem J, Kim M S, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S W, Kim D H 2020 Nat. Commun. 11 1
Google Scholar
[103] McCollough C 1965 Science 149 1115
Google Scholar
[104] Huang X, Li Q Y, Shi W, Liu K, Zhang Y P, Liu Y W, Wei X F, Zhao Z Y, Guo Y L, Liu Y Q 2021 Small 17 2102820
Google Scholar
[105] Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y 2019 Joule 3 1140
Google Scholar
[106] Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P, Park J H 2018 Nat. Commun. 9 5106
Google Scholar
[107] Wang S, Wang C Y, Wang P F, Wang C, Li Z A, Pan C, Dai1 Y T, Gao A Y, Liu C, Liu J, Yang H F, Liu X W, Cheng B, Chen K J, Wang Z L, Watanabe K J, Taniguchi T, Liang S J, Miao F 2020 Natl. Sci. Rev. 7 1
Google Scholar
[108] Euler T, Haverkamp S and Schubert T 2014 Nat. Rev. Neurosci. 15 507
Google Scholar
[109] van Hateren J H, Lamb T D 2006 Neuroscience 7 34
[110] Wang Z, Li C, Lin P, Rao M Y, Nie Y Y, Song W H, Qiu Q R, Li Y N, Yan P, Strachan J P, Ge N, McDonald N, Wu Q, Hu M, Wu H Q, Williams R S, Xia Q F, Yang J J 2019 Nat. Mach. Intell. 1 434
Google Scholar
[111] Moon J, Ma W, Shin J H, Cai F X, Du C, Lee S H, Lu W D 2019 Nat. Electron. 2 480
Google Scholar
[112] Du C, Cai F, Zidan M A, Ma W, Lee S H, Lu W D 2017 Nat. Commun. 8 2204
Google Scholar
[113] Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2021 Nat. Nanotechnol. 17 27
[114] Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X, Zhang R 2017 2 D Mater. 4 035022
[115] Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J S, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS nano 15 17917
Google Scholar
[116] Xie D D, Yin K, Yang Z J, Huang H, Li X H, Shu Z W, Duan H G, He J, Jiang J 2022 Materials Horizons, 9 1448-1459
计量
- 文章访问数: 17345
- PDF下载量: 1324
- 被引次数: 0