Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of stress on magneto-acoustic emission and magnetic domain motion characteristics

QIU Fasheng ZENG Yufan XIAO Shukun YIN Xiaofang GUO Chaoyang

Citation:

Influence of stress on magneto-acoustic emission and magnetic domain motion characteristics

QIU Fasheng, ZENG Yufan, XIAO Shukun, YIN Xiaofang, GUO Chaoyang
cstr: 32037.14.aps.74.20250376
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Microscopic and macroscopic magnetic responses are widely used for non-destructive testing and evaluating stress. The basic principle is that the magnetic domain pattern and magnetic domain dynamics are highly dependent on applied tensile stress. Understanding the evolution of magnetic domains under the action of multi-field coupling is critical for developing novel magnetic non-destructive testing technology. In this work, the influences of stress on magnetic domain and magneto-acoustic emission signals in polycrystalline materials are investigated based on the magneto-optical Kerr imaging and magneto-acoustic emission detection system. On a macroscopic scale, the mapping relationship between the magneto-acoustic emission signal and stress is established. Microscopically, the influences of the stress and grain boundaries on the magnetic domain patterns are investigated. And a mapping relationship between percentage of supplementary domains and stress is built. Finally, the interrelation between the domain wall dynamics and the magneto-acoustic emission signal is revealed from the nucleation of supplementary domains and their stress-dependent evolution. The results indicate that the magnetoelastic effect reduces the density of supplementary domains and 90° domains, which weakens the magneto-acoustic emission signal. The stress-magneto-acoustic model and the influence of the stress on the magnetic domain in this work reveal the mechanism of magneto-acoustic emission technique for stress measurement. It also provides a theoretical foundation for developing stress-magnetic-acoustic models and magnetic non-destructive testing technology.
      Corresponding author: QIU Fasheng, qiufasheng2019@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62201241), the Jiangxi Provincial Natural Science Foundation, China (Grant No. 20224BAB214057), the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province, China (Grant No. 20232BCJ23092), and the China Postdoctoral Science Foundation (Grant No. 2023M741097).
    [1]

    张召泉, 时朋朋, 苟晓凡 2022 71 097501Google Scholar

    Zhang Z Q, Shi P P, Gou X F 2022 Acta Phys. Sin. 71 097501Google Scholar

    [2]

    Huang S, Ragusa C S, Xu W J, Solimene L, Wang S H 2024 IEEE Trans. Instrum. Meas. 73 6008313

    [3]

    Wang Z J, Shi P P, Chen H, Liang T S, Deng K, Chen Z M 2023 J. Appl. Phys. 134 065103Google Scholar

    [4]

    Qian Z C, Miao X L, Wang J, Yang C L, Zhang W, Chen Z G, Li G R, Xu H M, Chen H B, Huang H H 2025 Nondestruct. Test. Eval. 40 1483Google Scholar

    [5]

    Liu Z H, Riaz W, Shen Y N, Wang X R, He C F, Shen G T 2024 NDT and E Int. 146 103171Google Scholar

    [6]

    Serbin E D, Kostin V N, Vasilenko O N, Ksenofontov D G, Gerasimov E G, Terentev P B 2020 NDT and E Int. 116 102330Google Scholar

    [7]

    Stupakov A, Perevertov O, Landa M 2017 J. Magn. Magn. Mater. 426 685Google Scholar

    [8]

    Raftrey D, Finizio S, Chopdekar R V, Dhuey S, Bayaraa T, Ashby P, Raabe J, Santo T, Griffin S, Fischer P 2024 Sci. Adv. 10 8615Google Scholar

    [9]

    Nie H Y, Li Z H, Wang X S, Wang Z Y 2024 Appl. Phys. Lett. 126 132402

    [10]

    Hariki A, Din D A, Amin O J, Yamaguchi T, Badura A, Kriegner D, Edmonds K W, Campion R P, Wadley P, Backes D, Veige L S I, Dhesi S S, Springholz G, Smejkal L, Vyborny K, Jungwirth T, Kunes J 2024 Phys. Rev. Lett. 132 176701Google Scholar

    [11]

    赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 72 208502Google Scholar

    Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502Google Scholar

    [12]

    张志东 2015 64 67503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 67503Google Scholar

    [13]

    McCord J 2015 J. Phys. D: Appl. Phys. 48 333001Google Scholar

    [14]

    Hubert A, Schäfer R 2008 Magnetic domains: the analysis of magnetic mi-crostructures (Vol. 1) (Heidelberg: Springer-Verlag) pp11–97

    [15]

    Honkanen M, Lukinmaa H, Kaappa S, Santa-aho S, Kajan J, Savolainen S, Azzari L, Laurson L, Palosaaro M, Vippola M 2024 Ultramicroscopy 262 113979Google Scholar

    [16]

    Martínez M D P, Wartelle A, Martínez C H, Fettar F, Blondelle F, Motte J, Donnelly C, Turnbull L, Ogrin F, Lann G, Popescu H, Jaouen N, Yakhou-Harris F, Beutier G 2023 Phys. Rev. B 107 04425

    [17]

    Winter K, Liao Z R, Abbá E, Linares J A R, Axinte D 2024 Nat. Commun. 15 9010Google Scholar

    [18]

    Perevertov O, Schäfer R 2012 J. Phys. D: Appl. Phys. 45 135001Google Scholar

    [19]

    Qiu F S, Matic J K, Tian G Y, Wu G H, McCord J 2021 J. Magn. Magn. Mater. 523 167588Google Scholar

    [20]

    Qiu F S, Matic J K, Tian G Y, Hu P, McCord J 2019 J. Phys. D: Appl. Phys. 52 265001Google Scholar

    [21]

    吴鑫, 张艳丽, 王振, 李梦星, 姜伟 2023 电工技术学报 38 2289

    Wu X, Zhang Y L, Wang Z, Li M X, Jiang W 2023 Trans. Chin. Electrotech. Soc. 38 2289

    [22]

    Zhang Z, Hamzehbahmani H, Gaskell P H. 2021 IEEE Trans. Magn. 58 1

    [23]

    Kawamura Y, Yamamoto S, Yamagata R, Nakamura S, Katsura S 2024 IEEE Trans. Magn. 60 2000506

    [24]

    李永建, 李宗明, 利雅婷, 岳帅超, 窦宇 2024 电工技术学报 39 6941

    Li Y J, Li Z M, Li Y T, Yue S C, Dou Y 2024 Trans. Chin. Electrotech. Soc. 39 6941

    [25]

    Legall F, Morice C, Jahjah W, Bivic A, Ryon N, Richy J, Prinsloo A R E, Sheppard C J, Fessant A, Jay J P, Spenato D, Dekadjevi D T 2021 Phys. Rev. Appl. 15 044028Google Scholar

    [26]

    Wu L B, Yao K, Zhao B X, Wang Y S 2019 Appl. Phys. Lett. 115 162406Google Scholar

    [27]

    Shibata M, Ono K 1981 NDT international 14 227Google Scholar

    [28]

    刘焕宇, 许宇帆, 叶家乐, 唐梦婷, 刘乐平, 魏亮辉, 邱发生 2022 失效分析与预防 17 247Google Scholar

    Liu H Y, Xu Y F, Ye J L, Tang M T, Liu L P, Wei L H, Qiu F S 2022 Fail. Anal. Prev. 17 247Google Scholar

  • 图 1  磁光成像系统和磁声发射检测系统

    Figure 1.  Magneto-optical imaging system and MAE measurement set-up.

    图 2  (a) 0和87 MPa磁声发射原始信号; (b)不同应力下磁声发射信号包络线

    Figure 2.  (a) MAE original signals under 0 and 87 MPa; (b) the MAE envelope under different stress.

    图 3  磁声发射信号峰值及峰值倒数与应力的关系

    Figure 3.  The relationship between Vpeak and 1/Vpeak with stress.

    图 4  晶粒1和晶粒2处不同应力及退磁状态下磁畴模式

    Figure 4.  The magnetic domain patterns in demagnetized state under different stress in grain 1 and grain 2.

    图 5  晶粒1不同应力和不同磁场下的磁畴图像

    Figure 5.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in grain 1.

    图 6  晶粒2处不同应力和不同磁场下的磁畴图像

    Figure 6.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in grain 2.

    图 7  位置1处不同应力和不同磁场下的磁畴图像

    Figure 7.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in location 1.

    图 8  位置2处不同应力和不同磁场下的磁畴图像

    Figure 8.  Magnetic field evolution of magnetic domain state for the ascending magnetic fields at different applied tensile stress amplitudes in location 2.

    图 9  磁声发射信号峰值与附加磁畴占比的关系 (a) 附加磁畴随应力的变化规律; (b)附加磁畴和MAE信号之间的关系

    Figure 9.  (a) The relationship between the percentage of supplementary domain and stress; (b) the relationship between the percentage of supplementary domain and the peak of MAE signal.

    Baidu
  • [1]

    张召泉, 时朋朋, 苟晓凡 2022 71 097501Google Scholar

    Zhang Z Q, Shi P P, Gou X F 2022 Acta Phys. Sin. 71 097501Google Scholar

    [2]

    Huang S, Ragusa C S, Xu W J, Solimene L, Wang S H 2024 IEEE Trans. Instrum. Meas. 73 6008313

    [3]

    Wang Z J, Shi P P, Chen H, Liang T S, Deng K, Chen Z M 2023 J. Appl. Phys. 134 065103Google Scholar

    [4]

    Qian Z C, Miao X L, Wang J, Yang C L, Zhang W, Chen Z G, Li G R, Xu H M, Chen H B, Huang H H 2025 Nondestruct. Test. Eval. 40 1483Google Scholar

    [5]

    Liu Z H, Riaz W, Shen Y N, Wang X R, He C F, Shen G T 2024 NDT and E Int. 146 103171Google Scholar

    [6]

    Serbin E D, Kostin V N, Vasilenko O N, Ksenofontov D G, Gerasimov E G, Terentev P B 2020 NDT and E Int. 116 102330Google Scholar

    [7]

    Stupakov A, Perevertov O, Landa M 2017 J. Magn. Magn. Mater. 426 685Google Scholar

    [8]

    Raftrey D, Finizio S, Chopdekar R V, Dhuey S, Bayaraa T, Ashby P, Raabe J, Santo T, Griffin S, Fischer P 2024 Sci. Adv. 10 8615Google Scholar

    [9]

    Nie H Y, Li Z H, Wang X S, Wang Z Y 2024 Appl. Phys. Lett. 126 132402

    [10]

    Hariki A, Din D A, Amin O J, Yamaguchi T, Badura A, Kriegner D, Edmonds K W, Campion R P, Wadley P, Backes D, Veige L S I, Dhesi S S, Springholz G, Smejkal L, Vyborny K, Jungwirth T, Kunes J 2024 Phys. Rev. Lett. 132 176701Google Scholar

    [11]

    赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 72 208502Google Scholar

    Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502Google Scholar

    [12]

    张志东 2015 64 67503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 67503Google Scholar

    [13]

    McCord J 2015 J. Phys. D: Appl. Phys. 48 333001Google Scholar

    [14]

    Hubert A, Schäfer R 2008 Magnetic domains: the analysis of magnetic mi-crostructures (Vol. 1) (Heidelberg: Springer-Verlag) pp11–97

    [15]

    Honkanen M, Lukinmaa H, Kaappa S, Santa-aho S, Kajan J, Savolainen S, Azzari L, Laurson L, Palosaaro M, Vippola M 2024 Ultramicroscopy 262 113979Google Scholar

    [16]

    Martínez M D P, Wartelle A, Martínez C H, Fettar F, Blondelle F, Motte J, Donnelly C, Turnbull L, Ogrin F, Lann G, Popescu H, Jaouen N, Yakhou-Harris F, Beutier G 2023 Phys. Rev. B 107 04425

    [17]

    Winter K, Liao Z R, Abbá E, Linares J A R, Axinte D 2024 Nat. Commun. 15 9010Google Scholar

    [18]

    Perevertov O, Schäfer R 2012 J. Phys. D: Appl. Phys. 45 135001Google Scholar

    [19]

    Qiu F S, Matic J K, Tian G Y, Wu G H, McCord J 2021 J. Magn. Magn. Mater. 523 167588Google Scholar

    [20]

    Qiu F S, Matic J K, Tian G Y, Hu P, McCord J 2019 J. Phys. D: Appl. Phys. 52 265001Google Scholar

    [21]

    吴鑫, 张艳丽, 王振, 李梦星, 姜伟 2023 电工技术学报 38 2289

    Wu X, Zhang Y L, Wang Z, Li M X, Jiang W 2023 Trans. Chin. Electrotech. Soc. 38 2289

    [22]

    Zhang Z, Hamzehbahmani H, Gaskell P H. 2021 IEEE Trans. Magn. 58 1

    [23]

    Kawamura Y, Yamamoto S, Yamagata R, Nakamura S, Katsura S 2024 IEEE Trans. Magn. 60 2000506

    [24]

    李永建, 李宗明, 利雅婷, 岳帅超, 窦宇 2024 电工技术学报 39 6941

    Li Y J, Li Z M, Li Y T, Yue S C, Dou Y 2024 Trans. Chin. Electrotech. Soc. 39 6941

    [25]

    Legall F, Morice C, Jahjah W, Bivic A, Ryon N, Richy J, Prinsloo A R E, Sheppard C J, Fessant A, Jay J P, Spenato D, Dekadjevi D T 2021 Phys. Rev. Appl. 15 044028Google Scholar

    [26]

    Wu L B, Yao K, Zhao B X, Wang Y S 2019 Appl. Phys. Lett. 115 162406Google Scholar

    [27]

    Shibata M, Ono K 1981 NDT international 14 227Google Scholar

    [28]

    刘焕宇, 许宇帆, 叶家乐, 唐梦婷, 刘乐平, 魏亮辉, 邱发生 2022 失效分析与预防 17 247Google Scholar

    Liu H Y, Xu Y F, Ye J L, Tang M T, Liu L P, Wei L H, Qiu F S 2022 Fail. Anal. Prev. 17 247Google Scholar

  • [1] Zhang Zhao-Quan, Shi Peng-Peng, Gou Xiao-Fan. Analytical model of magnetic Barkhausen stress test of ferromagnetic plates. Acta Physica Sinica, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [2] Ye Qing-Ying, Wang Wen-Jing, Deng Chu-Chu, Chen Shui-Yuan, Zhang Xin-Yuan, Wang Ya-Jing, Huang Qiu-Yi, Huang Zhi-Gao. Magnetic dynamic properties of defective iron nanorings. Acta Physica Sinica, 2019, 68(10): 107502. doi: 10.7498/aps.68.20182271
    [3] Hao Jun-Xiang, Yang Qing-Hui, Zhang Huai-Wu, Wen Qi-Ye, Zhong Zhi-Yong, Jia Li-Jun, Ma Bo, Wu Yu-Juan. Effect of lattice mismatch stress on magnetic domain of epitaxial single crystal (BiTm)3(GaFe)5O12 film. Acta Physica Sinica, 2018, 67(11): 117801. doi: 10.7498/aps.67.20180192
    [4] Deng Dong-Ge, Zuo Su, Wu Xin-Jun. A method of characterizing axial stress in ferromagnetic members using superficial magnetic flux density obtained from static magnetization by permanent magnet. Acta Physica Sinica, 2018, 67(17): 178103. doi: 10.7498/aps.67.20180560
    [5] Yan Bai-Ping, Zhang Cheng-Ming, Li Li-Yi, Lü Fu-Zai, Deng Shuang. Study on hysteresis characteristics of magnetic domain rotation in Tb0.3Dy0.7Fe2 alloy. Acta Physica Sinica, 2016, 65(6): 067501. doi: 10.7498/aps.65.067501
    [6] Zhang Zhi-Dong. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials. Acta Physica Sinica, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [7] Li Shao-Bo, Yin Chun-Hao, Xu Zhen-Kun, Li Pei-Xin, Wu Cai-Ping, Feng Ming-Yang. Study on magnetic properties of strontium ferrite based on the technology of electron paramagnetic resonance. Acta Physica Sinica, 2015, 64(10): 107502. doi: 10.7498/aps.64.107502
    [8] Liu Feng-Jin, Chen Shui-Yuan, Huang Zhi-Gao. Effects of Ba-doping and process conditions on the structure and magnetic properties of BiFeO3 ceramics. Acta Physica Sinica, 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [9] He Yong-Zhou, Zhou Qiao-Gen. Magnetic properties of permanent magnet for cryogenic undulator of permanent Shanghai synchrotron radiation facility. Acta Physica Sinica, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [10] Zhu Jin-Rong, Xiang Mei, Hu Jing-Guo. Dynamic behaviors of domain wall in FM/AFM bilayers. Acta Physica Sinica, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [11] Wang Guang-Jian, Jiang Cheng-Bao. The coercivity of the high temperature magnets Sm(CobalFe0.1Cu0.1Zr0.033)6.9 alloys. Acta Physica Sinica, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [12] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [13] Li Tian-Fu, Chen Dong-Feng, Wang Hong-Li, Sun Kai, Liu Yun-Tao. Magnetic properties of ultrathin (4?)Fe film studied by polarized neutron reflectometry. Acta Physica Sinica, 2009, 58(11): 7993-7997. doi: 10.7498/aps.58.7993
    [14] Qiu Dong-Jiang, Wang Jun, Ding Kou-Bao, Shi Hong-Jun, Jia Yin. Influence of annealing on the properties of Mn and N co-doped Zn0.88Mn0.12O:N films. Acta Physica Sinica, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [15] Hu Yun-Zhi, Sun Hui-Yuan. The formation of vertical Bloch line in the garnet bubble films subjected to pulsed bias field. Acta Physica Sinica, 2008, 57(8): 5256-5260. doi: 10.7498/aps.57.5256
    [16] Gao Tian, Cao Shi-Xun, Li Wen-Juan, Kang Bao-Juan, Yuan Shu-Juan, Zhang Jin-Cang. Magnetic transition and conducting behavior of the Cu-doped LaMn1-xCuxO3 system. Acta Physica Sinica, 2006, 55(7): 3692-3697. doi: 10.7498/aps.55.3692
    [17] Kang Bao-Juan, Cao Shi-Xun, Wang Xin-Yan, Li Ling-Wei, Li Wen-Feng, Liu Fen, Cao Gui-Xin, Yu Li-Ming, Jing Chao, Zhang Jin-Cang. Study on magnetic transition behavior for (Pr1-yNdy)2/3Sr1/3MnO3 system under superposed fields. Acta Physica Sinica, 2005, 54(2): 902-906. doi: 10.7498/aps.54.902
    [18] Jiang Wen-Hong, Luo Si-Wei, ZhongcunQingjiu. . Acta Physica Sinica, 2002, 51(1): 167-170. doi: 10.7498/aps.51.167
    [19] NIE XIANG-FU, TANG GUI-DE, NIU XIOU-DE, HAN BAO-SHAN. FORMATION AND STATIC CHARACTERISTICS OF THREE KINDS OF HARD DOMAINS IN BUBBLE MATERIALS. Acta Physica Sinica, 1990, 39(2): 296-301. doi: 10.7498/aps.39.296
    [20] LI JING-YUAN. HYSTERESIS LOOPS OF MAGNETIC BUBBLE MATERIALS AND THE REMANENCE OF BUBBLE LATTICE DOMAIN. Acta Physica Sinica, 1982, 31(6): 758-763. doi: 10.7498/aps.31.758
Metrics
  • Abstract views:  566
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2025
  • Accepted Date:  22 April 2025
  • Available Online:  13 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回
    Baidu
    map