搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格失配应力对单晶(BiTm)3(GaFe)5O12膜磁畴结构的影响

郝俊祥 杨青慧 张怀武 文岐业 白飞明 钟智勇 贾利军马博 吴玉娟

引用本文:
Citation:

晶格失配应力对单晶(BiTm)3(GaFe)5O12膜磁畴结构的影响

郝俊祥, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 贾利军马博, 吴玉娟

Effect of lattice mismatch stress on magnetic domain of epitaxial single crystal (BiTm)3(GaFe)5O12 film

Hao Jun-Xiang, Yang Qing-Hui, Zhang Huai-Wu, Wen Qi-Ye, Zhong Zhi-Yong, Jia Li-Jun, Ma Bo, Wu Yu-Juan
PDF
导出引用
  • 利用液相外延工艺在钆镓石榴石衬底上制得了单晶(BiTm)3(GaFe)5O12膜,研究了晶格失配应力对其磁畴结构的影响.研究发现,生长速率越快,膜的晶格常数越大;晶格失配应力可以在一定范围内调整膜的垂直各向异性;随着晶格失配应力由较大张应力逐渐转变为较大压应力,磁畴形状先由磁泡畴转变成迷宫畴,然后转变为过渡态部分弯曲的条状畴,最终转变为整齐排列的条状畴;失配应力同时对畴宽也有影响,膜受到的失配应力越大,畴宽越大.这一实验研究对基于控制晶格失配应力来调控单晶膜的各向异性和磁畴结构有指导意义.
    Yttrium iron garnet (YIG) film is a kind of magnetic film and has been investigated extensively because of its excellent magnetic properties and various applications in different fields. Generally, the easy-axis of the film is in-plane and can be changed from in-plane to out-of-plane by introducing some Bi3+ ions into the dodecahedral sites as it has big uniaxial anisotropy, which will be very important in magnetic bubble memories, magneto-optical devices and the new development of spin-wave logic devices. In comparison with many other preparation techniques, the liquid phase epitaxy (LPE) has been consider as a potential method of realizing perpendicular magnetization film due to its big growth-induced anisotropy. However, the LPE technique has more stringent requirements for lattice match between garnet film and gadolinium gallium garnet (GGG) substrate, especially in the growth of thick film. The lattice match is the key factor in LPE growth if the aim of experiment is to achieve a perfect quality and thick film. In most of experiments, there always exists the lattice mismatch between the film and substrate. Owing to the film and substrate have different chemical compositions, their lattice mismatch stress is unavoidable. The purpose of this paper is to investigate the effect of the stress on the anisotropy and then the magnetic domain of (BiTm)3(GaFe)5O12 single crystal film. In our experiment, the monocrystalline (BiTm)3(GaFe)5O12 films are prepared on (111)-oriented GGG substrates by LPE technique and the effect of lattice mismatch stress on the uniaxial anisotropy and magnetic domain are investigated. It is found that the lattice constant of the film is mainly determined by the content of Bi3+ in the film composition. and the increase of Bi3+ content leads to the increase of the film lattice constant, which affects the lattice mismatch stress between film and substrate. The lattice mismatch stress can adjust the perpendicular anisotropy of film which is the main reason for the domain changes. As the mismatch stress changes from tensile stress to compressive stress gradually, the magnetic bubble domain is transformed first into maze domain, and then into the partially striped domain, finally into the completely striped domain. The mismatch tensile stress is an effective method to enhance perpendicular anisotropy, when the growth-induced perpendicular anisotropy is not large enough. The bubble domain can only appear on the film with large tensile stress. The domain size is closely related to the stress. The domain width becomes wider as the mismatch stress becomes larger and it has the smallest domain size as the stress is minimum. These experimental results are very useful in controlling the uniaxial anisotropy and magnetic domain based on the change of the lattice mismatch stress in the growth process.
      通信作者: 杨青慧, yangqinghui@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51472046,51272036,51002021,61131005)资助的课题.
      Corresponding author: Yang Qing-Hui, yangqinghui@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472046, 51272036, 51002021, 61131005).
    [1]

    Bobeck A H 1967 Bell Syst. Tech. J. 46 1901

    [2]

    Konishi S 1983 IEEE Trans. Magn. MAG-19 1938

    [3]

    Davies J E, Giess E A 1975 J. Mater. Sci. 10 2156

    [4]

    Paroli P 1984 Thin Solid Films 114 187

    [5]

    Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575

    [6]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G 2016 Nat. Mater. 16 309

    [7]

    Rosencwaig A, Tabor W J 1971 J. Appl. Phys. 42 1643

    [8]

    Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213

    [9]

    Liu X, Sasaki Y, Furdyna J K 2003 Phys. Rev. B 67 205204

    [10]

    Stone P R, Dreher L, Beeman J W, Yu K M, Brandt M S, Dubon O D 2010 Phys. Rev. B 81 205210

    [11]

    Dho J, Hur N H 2007 J. Magn. Magn. Mater. 318 23

    [12]

    Jung C U, Yamada H, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 84 2590

    [13]

    Blank S L, Nielsen J W 1972 J. Cryst. Growth 17 302

    [14]

    Tian L G, Liu X L, Xu S S, Han X X 1989 Acta Phys. Sin. 38 1704(in Chinese) [田亮光, 刘湘林, 许顺生, 韩效溪 1989 38 1704]

    [15]

    Hansen P, Witter K, Tolksdorf W 1983 Phys. Rev. B 27 4375

    [16]

    Hansen P 1974 J. Appl. Phys. 45 3638

    [17]

    Kubota M, Shibuya K, Tokunaga Y, Kagawa F, Tsukazaki A, Tokura Y, Kawasaki M 2013 J. Magn. Magn. Mater. 339 63

    [18]

    Guduru P R, Chason E, Freund L B 2003 J. Mech. Phys. Solids 51 2127

    [19]

    Wagner G, Gottschalcrt V, Rhan H, Paufler P 2010 Phys. Stat. Sol. 112 519

    [20]

    Yang Q H, Zhang H W, Liu Y L, Weng Q Y, Ji H 2008 The Fourth National Congress and academic conference of China Crystal Society Mount Huangshan, China 2008, p274 (in Chinese) [杨青慧, 张怀武, 刘颖力, 文岐业, 姬洪 2008中国晶体学会全国会员代表大会暨学术会议中国黄山, 2008, 第274页]

    [21]

    Luchechko A P, Syvorotka I I, Zakharko Y, Syvorotka I M 2013 Solid State Phenom. 200 215

    [22]

    Navarro-Quezada A, Rodrguez A G, Vidal M A, Navarro-Contreras H 2006 J. Cryst. Growth 291 340

    [23]

    Anastassakis E 1990 J. Appl. Phys. 68 4561

    [24]

    Mermoux M, Crisci A, Baillet F, Destefanis V, Rouchon D, Papon A M, Hartmann J M 2010 J. Appl. Phys. 107 013512

    [25]

    Bateman T B 1966 J. Appl. Phys. 37 2194

    [26]

    Makino H, Hibiya T, Matsumi K 1974 AIP Conf. Proc. 18 80

    [27]

    Randles M M 1978 Liquid Phase Epitaxial Growth of Magnetic Garnets (Vol. 1) (Heidelberg: Springer-Verlag) pp80-81

    [28]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley Sons Ltd) pp333-334

    [29]

    Tkachuk S, Fratello V J, Krafft C, Lang G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 4238

    [30]

    Heinz D M, Besser P J, Owens J M, Mee J E, Pulliam G R 1971 J. Appl. Phys. 42 1243

    [31]

    Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052

    [32]

    Hansen P, Tolksdorf W, Witter K, Robertson J 1984 IEEE Trans. Magn. MAG-20 1099

    [33]

    Wen D, Zhang H, Hui X, Wang Y, Zhong Z, Bai F 2014 IEEE Trans. Magn. 50 2801804

    [34]

    Hansen P, Klages C, Witter K 1988 J. Appl. Phys. 63 2058

    [35]

    Nistor I, Krafft C, Rojas R, Mayergoyz I D 2004 IEEE Trans. Magn. 40 2832

    [36]

    Wen D, Zhang H, Yang X, L Q, Bai F 2017 J. Alloys Compd. 690 836

    [37]

    Zhu J, Su Y C, Pan J, Feng G L 2013 Acta Phys. Sin. 62 167503(in Chinese) [朱洁, 苏垣昌, 潘靖, 封国林 2013 62 167503]

    [38]

    Shen D F, Du T D, Wang L J, Zhang W Z 1991 Acta Phys. Sin. 40 653(in Chinese) [沈德芳, 杜腾达, 王丽娟, 张伟珠 1991 40 653]

    [39]

    Hansen P, Witter K 1985 J. Appl. Phys. 58 454

    [40]

    Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M, Tokura Y 2012 Appl. Phys. Express 5 103002

    [41]

    Mee J E, Pulliam G R, Archer J L, Besser P J 1969 IEEE Trans. Magn. Mag-5 717

  • [1]

    Bobeck A H 1967 Bell Syst. Tech. J. 46 1901

    [2]

    Konishi S 1983 IEEE Trans. Magn. MAG-19 1938

    [3]

    Davies J E, Giess E A 1975 J. Mater. Sci. 10 2156

    [4]

    Paroli P 1984 Thin Solid Films 114 187

    [5]

    Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575

    [6]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G 2016 Nat. Mater. 16 309

    [7]

    Rosencwaig A, Tabor W J 1971 J. Appl. Phys. 42 1643

    [8]

    Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213

    [9]

    Liu X, Sasaki Y, Furdyna J K 2003 Phys. Rev. B 67 205204

    [10]

    Stone P R, Dreher L, Beeman J W, Yu K M, Brandt M S, Dubon O D 2010 Phys. Rev. B 81 205210

    [11]

    Dho J, Hur N H 2007 J. Magn. Magn. Mater. 318 23

    [12]

    Jung C U, Yamada H, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 84 2590

    [13]

    Blank S L, Nielsen J W 1972 J. Cryst. Growth 17 302

    [14]

    Tian L G, Liu X L, Xu S S, Han X X 1989 Acta Phys. Sin. 38 1704(in Chinese) [田亮光, 刘湘林, 许顺生, 韩效溪 1989 38 1704]

    [15]

    Hansen P, Witter K, Tolksdorf W 1983 Phys. Rev. B 27 4375

    [16]

    Hansen P 1974 J. Appl. Phys. 45 3638

    [17]

    Kubota M, Shibuya K, Tokunaga Y, Kagawa F, Tsukazaki A, Tokura Y, Kawasaki M 2013 J. Magn. Magn. Mater. 339 63

    [18]

    Guduru P R, Chason E, Freund L B 2003 J. Mech. Phys. Solids 51 2127

    [19]

    Wagner G, Gottschalcrt V, Rhan H, Paufler P 2010 Phys. Stat. Sol. 112 519

    [20]

    Yang Q H, Zhang H W, Liu Y L, Weng Q Y, Ji H 2008 The Fourth National Congress and academic conference of China Crystal Society Mount Huangshan, China 2008, p274 (in Chinese) [杨青慧, 张怀武, 刘颖力, 文岐业, 姬洪 2008中国晶体学会全国会员代表大会暨学术会议中国黄山, 2008, 第274页]

    [21]

    Luchechko A P, Syvorotka I I, Zakharko Y, Syvorotka I M 2013 Solid State Phenom. 200 215

    [22]

    Navarro-Quezada A, Rodrguez A G, Vidal M A, Navarro-Contreras H 2006 J. Cryst. Growth 291 340

    [23]

    Anastassakis E 1990 J. Appl. Phys. 68 4561

    [24]

    Mermoux M, Crisci A, Baillet F, Destefanis V, Rouchon D, Papon A M, Hartmann J M 2010 J. Appl. Phys. 107 013512

    [25]

    Bateman T B 1966 J. Appl. Phys. 37 2194

    [26]

    Makino H, Hibiya T, Matsumi K 1974 AIP Conf. Proc. 18 80

    [27]

    Randles M M 1978 Liquid Phase Epitaxial Growth of Magnetic Garnets (Vol. 1) (Heidelberg: Springer-Verlag) pp80-81

    [28]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley Sons Ltd) pp333-334

    [29]

    Tkachuk S, Fratello V J, Krafft C, Lang G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 4238

    [30]

    Heinz D M, Besser P J, Owens J M, Mee J E, Pulliam G R 1971 J. Appl. Phys. 42 1243

    [31]

    Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052

    [32]

    Hansen P, Tolksdorf W, Witter K, Robertson J 1984 IEEE Trans. Magn. MAG-20 1099

    [33]

    Wen D, Zhang H, Hui X, Wang Y, Zhong Z, Bai F 2014 IEEE Trans. Magn. 50 2801804

    [34]

    Hansen P, Klages C, Witter K 1988 J. Appl. Phys. 63 2058

    [35]

    Nistor I, Krafft C, Rojas R, Mayergoyz I D 2004 IEEE Trans. Magn. 40 2832

    [36]

    Wen D, Zhang H, Yang X, L Q, Bai F 2017 J. Alloys Compd. 690 836

    [37]

    Zhu J, Su Y C, Pan J, Feng G L 2013 Acta Phys. Sin. 62 167503(in Chinese) [朱洁, 苏垣昌, 潘靖, 封国林 2013 62 167503]

    [38]

    Shen D F, Du T D, Wang L J, Zhang W Z 1991 Acta Phys. Sin. 40 653(in Chinese) [沈德芳, 杜腾达, 王丽娟, 张伟珠 1991 40 653]

    [39]

    Hansen P, Witter K 1985 J. Appl. Phys. 58 454

    [40]

    Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M, Tokura Y 2012 Appl. Phys. Express 5 103002

    [41]

    Mee J E, Pulliam G R, Archer J L, Besser P J 1969 IEEE Trans. Magn. Mag-5 717

  • [1] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转.  , 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [2] 张建强, 秦彦军, 方峥, 范晓珍, 杨慧雅, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟. Fe基合金应力感生不可逆磁各向异性机理.  , 2022, 71(24): 247501. doi: 10.7498/aps.71.20221509
    [3] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析.  , 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [4] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究.  , 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [5] 李金财, 詹清峰, 潘民杰, 刘鲁萍, 杨华礼, 谢亚丽, 谢淑红, 李润伟. 具有条纹磁畴结构的NiFe薄膜的制备与磁各向异性研究.  , 2016, 65(21): 217501. doi: 10.7498/aps.65.217501
    [6] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力.  , 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [7] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性.  , 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [8] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟.  , 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [9] 胡云志, 孙会元. 脉冲偏场作用下石榴石磁泡薄膜中布洛赫线的形成.  , 2008, 57(8): 5256-5260. doi: 10.7498/aps.57.5256
    [10] 施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民. 应力退火Fe基纳米晶薄带横向磁各向异性的介观结构研究.  , 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [11] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子.  , 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [12] 越方禹, 邵 军, 魏彦峰, 吕 翔, 黄 炜, 杨建荣, 褚君浩. 变温吸收谱研究液相外延碲镉汞浅能级.  , 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [13] 姜永远, 张永强, 时红艳, 侯春风, 孙秀冬. 单轴各向异性左手介质表面的Goos-H?nchen位移.  , 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [14] 石 玉, 邢怀中, 张怀武, 荆玉兰, 刘颖力. 磁场诱导的单离子各向异性反铁磁链的比热.  , 2005, 54(1): 280-283. doi: 10.7498/aps.54.280
    [15] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究.  , 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [16] 姜文红, 罗四维, 中村庆久. 写磁头对记录介质中输出信号的影响.  , 2002, 51(1): 167-170. doi: 10.7498/aps.51.167
    [17] 沈文忠, 李振亚. 具有单轴各向异性的磁性超晶格中的自旋波.  , 1992, 41(8): 1374-1379. doi: 10.7498/aps.41.1374
    [18] 李华, 姜寿亭, 梅良模, 郭贻诚, 杨桂林, 徐游, 翟宏如. α-Fe2O3单离子磁晶各向异性的计算及Morin转变的解释.  , 1988, 37(1): 36-42. doi: 10.7498/aps.37.36
    [19] 韩宝善, 李伯臧, 聂向富, 唐贵德. 立方磁晶各向异性对面内磁场中条畴和磁泡稳定性的影响.  , 1985, 34(2): 155-163. doi: 10.7498/aps.34.155
    [20] 林肇华, 戴道生. 非晶态合金带中内应力场的形成和磁各向异性的分布.  , 1982, 31(7): 871-881. doi: 10.7498/aps.31.871
计量
  • 文章访问数:  6346
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 修回日期:  2018-03-15
  • 刊出日期:  2018-06-05

/

返回文章
返回
Baidu
map