Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonreciprocal reflection in one-dimensional quasi-periodic defective atomic lattice

XU Qiongyi ZHANG Jin ZHENG Yiting YAN Dong ZHANG Hanxiao YANG Hong

Citation:

Nonreciprocal reflection in one-dimensional quasi-periodic defective atomic lattice

XU Qiongyi, ZHANG Jin, ZHENG Yiting, YAN Dong, ZHANG Hanxiao, YANG Hong
cstr: 32037.14.aps.74.20250270
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to further investigate the non-reciprocity of light propagation in the defective atomic lattices, and due to its effective application in designing novel photonic devices, such as all-optical diodes and isolators, which are powerful tools for information processing and quantum simulation, we innovatively propose to use the Fibonacci sequence to modulate the arrangement of empty lattice cells that form a quasi periodic defective atomic lattices. In the electromagnetically induced transparency window, the probe light is almost not absorbed under the control of a strong coupling field (see Fig. 1). The numerical simulation indicates that a wide nonreciprocal reflection band can be achieved by modulating the number of filled lattice cells, Fibonacci sequence, the period number in a single quasi period (see Fig. 2). These results provide more degrees of freedom for regulating nonreciprocal reflection with wide bandwidth and high contrast, and have potential applications in quantum computing and information processing.
      Corresponding author: YANG Hong, yang_hongbj@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12204137) and the Hainan Province Graduate Innovation Research Project, China (Grant No. Qhys2023-394).
    [1]

    White A D, Ahn G H, Gasse K V, Yang K Y, Chang L, Bowers J E, Vučković J 2023 Nat. Photonics 17 143Google Scholar

    [2]

    Prabu K, Nasre D 2019 Plasmonics 14 1261Google Scholar

    [3]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602Google Scholar

    [4]

    Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics 15 828Google Scholar

    [5]

    Chan E H W 2014 Opt. Commun. 324 127Google Scholar

    [6]

    Litinskaya M, Shapiro E A 2015 Phys. Rev. A 91 033802Google Scholar

    [7]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [8]

    Wu J, Wang Z M, Zhai H, Shi Z X, Wu X H, Wu F 2021 Opt. Mater. Express 11 4058Google Scholar

    [9]

    Wang Z Y, Qian J, Wang Y P, Li J, You J Q 2023 Appl. Phys. Lett. 123 153904Google Scholar

    [10]

    Chakraborty S, Das C 2023 Phys. Rev. A 108 063704Google Scholar

    [11]

    Wang Y M, Xiong W, Xu Z Y, Zhang G Q, You J Q 2022 Sci. China-Phys. , Mech. Astron. 65 260314Google Scholar

    [12]

    He X W, Wang Z Y, Han X, Zhang S, Wang H F 2023 Opt. Express 31 43506Google Scholar

    [13]

    Yang Y, Guan B, Zhang C L, Liu L C, Liu K 2020 Optoelectron. Sci. Mater. 11606 74

    [14]

    Kim M K 2015 Opt. Express 23 2040Google Scholar

    [15]

    Kawaguchi Y, Alù A, Khanikaev A B 2022 Opt. Mater. Express 12 1453Google Scholar

    [16]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [17]

    Fleury R, Sounas D L, Alù A 2018 J. Opt. 20 034007Google Scholar

    [18]

    Cardin A E, Silva S R, Vardeny S R, Padilla W J, Saxena A, Taylor A J, Kort-Kamp W J M, Chen H T, Dalvit D A R, Azad A K 2020 Nat. Commun. 11 1469Google Scholar

    [19]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [20]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [21]

    Rodriguez S R K, Goblot V, Zambon N C, Amo A, Bloch J 2019 Phys. Rev. A 99 013851Google Scholar

    [22]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [23]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [24]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B , Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [25]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [26]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [27]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [28]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [29]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [30]

    Guo T J, Argyropoulos C 2022 Phys. Rev. B 106 235418Google Scholar

    [31]

    Zheng D D, Zhang Y, Liu Y M, Zhang X J, Wu J H 2023 Phys. Rev. A 107 013704Google Scholar

    [32]

    Horsley S A R, Artoni M, La Rocca G C 2015 Nat. Photonics 9 436Google Scholar

    [33]

    Pei X S, Zhang H X, Pan M M, Geng Y, Li T M, Yang H 2023 Opt. Express 31 14694Google Scholar

    [34]

    Peng P S, Thapa G, Zhou J F, Talbayev D 2023 Optica 10 155Google Scholar

    [35]

    Guddala S, Kawaguchi Y, Komissarenko F, Kiriushechkina S, Vakulenko A, Chen K, Alù A, Menon V M, Khanikaev A B 2021 Nat. Commun. 12 3746Google Scholar

    [36]

    Gao W T, Yang C W, Tan Y T, Ren J 2022 Appl. Phys. Lett. 121 071702Google Scholar

    [37]

    Chamanara N, Taravati S, Deck-Léger Z L, Caloz C 2017 Phys. Rev. B 96 155409Google Scholar

    [38]

    Hack S A, van der Vegt J J W, Vos W L 2019 Phys. Rev. B 99 115308Google Scholar

    [39]

    Yoon T, Bajcsy M 2019 Phys. Rev. A 99 023415Google Scholar

    [40]

    Yang H, Zhang T G, Zhang Y, Wu J H 2020 Phys. Rev. A 101 053856Google Scholar

    [41]

    Wu J H, Artoni M, La Rocca G C 2017 Phys. Rev. A 95 053862Google Scholar

    [42]

    Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [43]

    Li T M, Wang M H, Yin C P, Wu J H, Yang H 2021 Opt. Express 29 31767Google Scholar

    [44]

    Yang H, Yang L, Wang X C, Cui C L, Zhang Y, Wu J H 2013 Phys. Rev. A 88 063832Google Scholar

    [45]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [46]

    Chaung Y L, Shamsi A, Abbas M, Ziauddin 2020 Opt. Express 28 1701Google Scholar

    [47]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [48]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [49]

    Wang C Q, Jiang X F, Zhao G M, Zhang M Z, Hsu C W, Peng B, Stone A D, Jiang L, Yang L 2020 Nat. Phys. 16 334Google Scholar

    [50]

    Finkelstein R, Bali S, Firstenberg O, Novikova I 2023 New J. Phys. 25 035001Google Scholar

    [51]

    刘建基, 刘甲琛, 张国权 2023 72 094201Google Scholar

    Liu J J, Liu J C, Zhang G Q 2023 Acta Phys. Sin. 72 094201Google Scholar

    [52]

    Li T M, Yang H, Wang M H, Yin C P, Zhang T G, Zhang Y 2024 Phys. Rev. Res. 6 023122Google Scholar

    [53]

    Yuan J P, Wu C H, Wang L R, Chen G, Jia S T 2019 Opt. Lett. 44 4123Google Scholar

    [54]

    Yuan J P, Zhang H F, Wu C H, Wang L R, Xiao L T, Jia S T 2021 Opt. Lett. 46 4184Google Scholar

    [55]

    Yuan J P, Zhang H F, Wu C H, Chen G, Wang L R, Xiao L T, Jia S T 2023 Laser Photonics Rev. 17 2200667Google Scholar

    [56]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809.Google Scholar

    [57]

    Kuraptsev A S, Sokolov I M 2015 Phys. Rev. A 91 053822Google Scholar

    [58]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [59]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • 图 1  (a)三能级Lambda型相干原子系统; (b)一维准周期缺陷原子晶格与相干光场的作用; (c)一个满晶格周期中探测场平均极化率实部和虚部随失谐的变化及其与$ - 2\varDelta {\lambda _{{\mathrm{Lat}}}}/{\lambda _{{\mathrm{Lat}}}} \approx 0.0023 $的交点

    Figure 1.  (a) Three-level Lambda model coherent atomic system; (b) interaction between 1D quasi-periodic atomic lattice and coherent optical field; (c) the real and imaginary parts of average susceptibility in one filled lattice cell v.s. probe detuning, and the intersection with $ - 2\varDelta {\lambda _{{\text{Lat}}}}/{\lambda _{{\text{Lat}}}} \approx 0.0023 $.

    图 2  (a), (b)展示了左右反射率$ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化, 分别对应$ n \in \left[ {2, 16} \right] $和$ n \in \left[ {2, 21} \right] $; (c), (d)展示了左右反射率$ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $随失谐$ {\varDelta _{\mathrm{p}}} $和斐波那契数列数量$ b(n) $中最大n值的变化. 其他参数: $ {{{N}}_0} = 7 \times {10^{11}}{\text{ }}{\mathrm{c{m}}^{ - 3}} $, $ \eta = 5 $, $ a = 40 $, $ c = 1 $, $ d = 1500 $, $ {\gamma _{31}} = $$ 6{\text{ MHz}} $, $ {\gamma _{21}} = 0.001{\text{ MHz}} $, $ {\varDelta _{\mathrm{c}}} = 15{\text{ MHz}} $, $ {\varOmega _{\mathrm{c}}} = 36{\text{ MHz}} $, $ {\lambda _{{\mathrm{Lat0}}}} = 781{\text{ nm}} $, $ {\lambda _{\mathrm{p}}} = 780.24{\text{ nm}} $, $ \varDelta {\lambda _{{\mathrm{Lat}}}} = - 0.9{\text{ nm}} $, $ {\boldsymbol d} _{13} = 1.0357 \times $$ {10^{ - 29}}{\text{ }}{\mathrm{C}}{ \cdot} {\mathrm{m}} $

    Figure 2.  (a) $ n \in \left[ {2, 16} \right] $ and (b) $ n \in \left[ {2, 21} \right] $ shows the reflectivities $ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $; (c), (d) the reflectivities $ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $ v.s. the number of dissonance and Fibonacci series $ b(n) $ and detuning $ {\varDelta _{\mathrm{p}}} $, respectively. Other relevant parameters: $ {{{N}}_0} = 7 \times {10^{11}}{\text{ }}{\mathrm{c{m}}^{ - 3}} $, $ \eta = 5 $, $ a = 40 $, $ c = 1 $, $ d = 1500 $, $ {\gamma _{31}} = 6{\text{ MHz}} $, $ {\gamma _{21}} = 0.001{\text{ MHz}} $, $ {\varDelta _{\mathrm{c}}} = 15 \;{\mathrm{MHz}} $, $ {\varOmega _{\mathrm{c}}} = 36{\text{ MHz}} $, $ {\lambda _{{\mathrm{Lat0}}}} = 781{\text{ nm}} $, $ {\lambda _{\mathrm{p}}} = $$ 780.24{\text{ nm}} $, $ \varDelta {\lambda _{{\mathrm{Lat}}}} = - 0.9{\text{ nm}} $, ${\boldsymbol d _{13}}= 1.0357 \times {10^{ - 29}}{\text{ }}{\mathrm{C}} {\cdot} {\mathrm{m}} $.

    图 3  左右反射率$ {R_{\mathrm{l}}}_{, r} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化(a) $ n \in \left[ {2, 7} \right] $; (b) $ n \in \left[ {8, 13} \right] $; (c) $ n \in \left[ {8, 17} \right] $. 相关参数: $ c = 10 $, 其他参数如图2所示

    Figure 3.  The reflectivities $ {R_{\mathrm{l}}}_{, r} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $: (a) $ n \in $$ \left[ {2, 7} \right] $; (b) $ n \in \left[ {8, 13} \right] $; (c) $ n \in \left[ {8, 17} \right] $. Here $ c = 10 $, other parameters are shown in Fig 2.

    图 4  左右反射率$ {R_{\mathrm{l}}}_{, r} $和反射对比度$ {C_{{R}}} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化 (a) $ a = 30 $; (b) $ a = 20 $; (c) $ a = 10 $. 相关参数: $ n \in $$ \left[ {8, 17} \right] $, $ c = 10 $, 其他参数如图2所示

    Figure 4.  The reflectivities $ {R_{\mathrm{l}}}_{, r} $ and the reflection contrast $ {C_{{R}}} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $: (a) $ a = 30 $; (b) $ a = 20 $; (c) $ a = 10 $. Here $ n \in \left[ {8, 17} \right] $, $ c = 10 $, other parameters are shown in Fig 2.

    图 5  左右反射率$ {R_{\mathrm{l}}}_{, r} $和反射对比度$ {C_{{R}}} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化 (a) $ c = 20 $; (b) $ c = 25 $; (c) $ c = 30 $. 相关参数: $ n \in $$ \left[ {8, 17} \right] $, $ a = 20 $, 其他参数如图2所示

    Figure 5.  The reflectivities $ {R_{\mathrm{l}}}_{, r} $ and the reflection contrast $ {C_{{R}}} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $: (a) $ c = 20 $; (b) $ c = 25 $; (c) $ c = 30 $. Here $ n \in \left[ {8, 17} \right] $, $ a = 20 $, other parameters are shown in Fig 2.

    图 6  (a)左反射率$ {R_{\mathrm{l}}} $和(b)右反射率$ {R_{\mathrm{r}}} $随探测场失谐$ {\varDelta _{\mathrm{p}}} $和强耦合场失谐$ {\varDelta _{\mathrm{c}}} $的变化. 相关参数: $ n \in \left[ {8, 17} \right] $, $ a = $$ 20 $, $ c = 30 $, 其他参数如图2所示

    Figure 6.  (a) The left reflectivity $ {R_{\mathrm{l}}} $ and (b) the right reflectivity $ {R_{\mathrm{r}}} $ v.s. the probe detuning $ {\varDelta _{\mathrm{p}}} $ and the strong coupling field detuning $ {\varDelta _{\mathrm{c}}} $. Here $ n \in \left[ {8, 17} \right] $, $ a = 20 $, $ c = 30 $, other parameters are shown in Fig 2.

    Baidu
  • [1]

    White A D, Ahn G H, Gasse K V, Yang K Y, Chang L, Bowers J E, Vučković J 2023 Nat. Photonics 17 143Google Scholar

    [2]

    Prabu K, Nasre D 2019 Plasmonics 14 1261Google Scholar

    [3]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602Google Scholar

    [4]

    Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics 15 828Google Scholar

    [5]

    Chan E H W 2014 Opt. Commun. 324 127Google Scholar

    [6]

    Litinskaya M, Shapiro E A 2015 Phys. Rev. A 91 033802Google Scholar

    [7]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [8]

    Wu J, Wang Z M, Zhai H, Shi Z X, Wu X H, Wu F 2021 Opt. Mater. Express 11 4058Google Scholar

    [9]

    Wang Z Y, Qian J, Wang Y P, Li J, You J Q 2023 Appl. Phys. Lett. 123 153904Google Scholar

    [10]

    Chakraborty S, Das C 2023 Phys. Rev. A 108 063704Google Scholar

    [11]

    Wang Y M, Xiong W, Xu Z Y, Zhang G Q, You J Q 2022 Sci. China-Phys. , Mech. Astron. 65 260314Google Scholar

    [12]

    He X W, Wang Z Y, Han X, Zhang S, Wang H F 2023 Opt. Express 31 43506Google Scholar

    [13]

    Yang Y, Guan B, Zhang C L, Liu L C, Liu K 2020 Optoelectron. Sci. Mater. 11606 74

    [14]

    Kim M K 2015 Opt. Express 23 2040Google Scholar

    [15]

    Kawaguchi Y, Alù A, Khanikaev A B 2022 Opt. Mater. Express 12 1453Google Scholar

    [16]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [17]

    Fleury R, Sounas D L, Alù A 2018 J. Opt. 20 034007Google Scholar

    [18]

    Cardin A E, Silva S R, Vardeny S R, Padilla W J, Saxena A, Taylor A J, Kort-Kamp W J M, Chen H T, Dalvit D A R, Azad A K 2020 Nat. Commun. 11 1469Google Scholar

    [19]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [20]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [21]

    Rodriguez S R K, Goblot V, Zambon N C, Amo A, Bloch J 2019 Phys. Rev. A 99 013851Google Scholar

    [22]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [23]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [24]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B , Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [25]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [26]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [27]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [28]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [29]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [30]

    Guo T J, Argyropoulos C 2022 Phys. Rev. B 106 235418Google Scholar

    [31]

    Zheng D D, Zhang Y, Liu Y M, Zhang X J, Wu J H 2023 Phys. Rev. A 107 013704Google Scholar

    [32]

    Horsley S A R, Artoni M, La Rocca G C 2015 Nat. Photonics 9 436Google Scholar

    [33]

    Pei X S, Zhang H X, Pan M M, Geng Y, Li T M, Yang H 2023 Opt. Express 31 14694Google Scholar

    [34]

    Peng P S, Thapa G, Zhou J F, Talbayev D 2023 Optica 10 155Google Scholar

    [35]

    Guddala S, Kawaguchi Y, Komissarenko F, Kiriushechkina S, Vakulenko A, Chen K, Alù A, Menon V M, Khanikaev A B 2021 Nat. Commun. 12 3746Google Scholar

    [36]

    Gao W T, Yang C W, Tan Y T, Ren J 2022 Appl. Phys. Lett. 121 071702Google Scholar

    [37]

    Chamanara N, Taravati S, Deck-Léger Z L, Caloz C 2017 Phys. Rev. B 96 155409Google Scholar

    [38]

    Hack S A, van der Vegt J J W, Vos W L 2019 Phys. Rev. B 99 115308Google Scholar

    [39]

    Yoon T, Bajcsy M 2019 Phys. Rev. A 99 023415Google Scholar

    [40]

    Yang H, Zhang T G, Zhang Y, Wu J H 2020 Phys. Rev. A 101 053856Google Scholar

    [41]

    Wu J H, Artoni M, La Rocca G C 2017 Phys. Rev. A 95 053862Google Scholar

    [42]

    Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [43]

    Li T M, Wang M H, Yin C P, Wu J H, Yang H 2021 Opt. Express 29 31767Google Scholar

    [44]

    Yang H, Yang L, Wang X C, Cui C L, Zhang Y, Wu J H 2013 Phys. Rev. A 88 063832Google Scholar

    [45]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [46]

    Chaung Y L, Shamsi A, Abbas M, Ziauddin 2020 Opt. Express 28 1701Google Scholar

    [47]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [48]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [49]

    Wang C Q, Jiang X F, Zhao G M, Zhang M Z, Hsu C W, Peng B, Stone A D, Jiang L, Yang L 2020 Nat. Phys. 16 334Google Scholar

    [50]

    Finkelstein R, Bali S, Firstenberg O, Novikova I 2023 New J. Phys. 25 035001Google Scholar

    [51]

    刘建基, 刘甲琛, 张国权 2023 72 094201Google Scholar

    Liu J J, Liu J C, Zhang G Q 2023 Acta Phys. Sin. 72 094201Google Scholar

    [52]

    Li T M, Yang H, Wang M H, Yin C P, Zhang T G, Zhang Y 2024 Phys. Rev. Res. 6 023122Google Scholar

    [53]

    Yuan J P, Wu C H, Wang L R, Chen G, Jia S T 2019 Opt. Lett. 44 4123Google Scholar

    [54]

    Yuan J P, Zhang H F, Wu C H, Wang L R, Xiao L T, Jia S T 2021 Opt. Lett. 46 4184Google Scholar

    [55]

    Yuan J P, Zhang H F, Wu C H, Chen G, Wang L R, Xiao L T, Jia S T 2023 Laser Photonics Rev. 17 2200667Google Scholar

    [56]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809.Google Scholar

    [57]

    Kuraptsev A S, Sokolov I M 2015 Phys. Rev. A 91 053822Google Scholar

    [58]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [59]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • [1] LI Ruonan, XUE Jingjing, SONG Dan, LI Xin, WANG Dan, YANG Baodong, ZHOU Haitao. Transfer of optical orbital angular momentum under nonreciprocity-reciprocity amplification conversion. Acta Physica Sinica, 2025, 74(4): 044203. doi: 10.7498/aps.74.20241565
    [2] DING Xiaoguan, ZHAO Kaijun, XIE Yaoyu, CHEN Zhipeng, CHEN Zhongyong, YANG Zhoujun, GAO Li, DING Yonghua, WEN Siyu, HU Yingxin. Effects of turbulence spreading and symmetry breaking on edge shear flow during sawtooth cycles in J-TEXT tokamak. Acta Physica Sinica, 2025, 74(4): 045201. doi: 10.7498/aps.74.20241364
    [3] ZHANG Huiling, XIE Zhongzhu, HAO Jiarui, FANG Yong. Experimental research on optical nonreciprocal control of cesium atomic systems at room temperature. Acta Physica Sinica, 2025, 74(6): 064206. doi: 10.7498/aps.74.20241463
    [4] Wang Zi-Yao, Chen Fu-Jia, Xi Xiang, Gao Zhen, Yang Yi-Hao. Non-reciprocal topological photonics. Acta Physica Sinica, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [5] Yang Shuo-Ying, Yin Jia-Xin. Transport phenomena in time-reversal symmetry-breaking Kagome superconductors. Acta Physica Sinica, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [6] Li Guan-Rong, Zheng Yi-Ting, Xu Qiong-Yi, Pei Xiao-Shan, Geng Yue, Yan Dong, Yang Hong. Perfect non-reciprocal reflection amplification in closed loop coherent gain atomic system. Acta Physica Sinica, 2024, 73(12): 126401. doi: 10.7498/aps.73.20240347
    [7] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [8] Wang En-Quan, Chen Hao, Yang Yi, Long Zheng-Wen, Hassanabadi Hassan. Generalized Klein-Gordon oscillator in Lorentz symmetry violation framework. Acta Physica Sinica, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [9] Yang Shu-Zheng, Lin Kai. Hawking tunneling radiation in Lorentz-violating scalar field theory. Acta Physica Sinica, 2019, 68(6): 060401. doi: 10.7498/aps.68.20182050
    [10] Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei. Topological zero-energy modes in time-reversal-symmetry-broken systems. Acta Physica Sinica, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [11] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [12] Zhou Jun, Ren Hai-Dong, Feng Ya-Ping. The pulsating propagation of spatial soliton in strongly nonlocal optical lattice. Acta Physica Sinica, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [13] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [14] Lu Gong-Ru, Li Xiang, Li Pei-Ying. Probing R-parity violating interactions from top quark polarization at LHC. Acta Physica Sinica, 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [15] . Acta Physica Sinica, 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [16] YI LIN, YAO KAI-LUN. THREE-DIMENSIONAL QUANTUM SPIN GLASS THEORY(Ⅲ) ──REPLICA SYMMETRY BREAKING SOLUTION. Acta Physica Sinica, 1996, 45(1): 133-139. doi: 10.7498/aps.45.133
    [17] YU YANG-ZHENG, CHEN XIONG-XIONG. BREAKING OF SUPERSYMMETRY AND WITTEN INDEX IN TWO-DIMENSIONAL SUPERSYMMETRIC MODELS. Acta Physica Sinica, 1993, 42(2): 214-222. doi: 10.7498/aps.42.214
    [18] SUN ZONG-QI. DEFECT OF SYMMETRY OF THE TIME-MEAN-INTERACTION-FIELD BETWEEN AN OSCILLATING KINK AND POINT DEFECT AND SELF-ORGANIZATION PHENOMENON. Acta Physica Sinica, 1992, 41(12): 1987-1992. doi: 10.7498/aps.41.1987
    [19] PAN HAI-FU, GU YUAN-XIN. ARTIFICIAL PHASE DEGENERATION IN THE DETERMINATION OF NON-CENTROSYMMETRIC STRUCTURES (Ⅱ) ——AN EXAMPLE OF SOLVING A COMPLEX HEAVY ATOM CONTAINING CRYSTAL OF SPACE GROUP P21. Acta Physica Sinica, 1982, 31(7): 969-971. doi: 10.7498/aps.31.969
    [20] ZHAO BAO-HENG. PHOTON-PHOTON SCATTERING IN SPONTANEOUSLY BROKEN GAUGE THEORIES. Acta Physica Sinica, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
Metrics
  • Abstract views:  317
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2025
  • Accepted Date:  25 March 2025
  • Available Online:  08 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map