-
The atomic nucleus is an extremely complex quantum many-body system composed of nucleons, and its shape is determined by the number of nucleons and their interactions. The study of atomic nuclear shapes is one of the most fascinating topics in nuclear physics, providing rich insights into the microscopic details of nuclear structure. Physicists have observed significant shape coexistence phenomena and stable triaxial deformation in isotopes of Zn, Ge, Se, and Kr. This paper aims to delve deeper into the impact of shape coexistence and triaxiality on the ground-state properties of atomic nuclei, as well as to verify new magic numbers.
We employed the density-dependent meson-exchange model within the framework of the Relativistic Hartree-Bogoliubov (RHB) theory to systematically study the ground-state properties of even-even Zn, Ge, Se, and Kr isotopes with neutron numbers N=32-42. The calculated potential energy surfaces clearly demonstrate the presence of shape coexistence and triaxial characteristics in these isotopes. By analyzing the ground-state energy, deformation parameters, two-neutron separation energies, neutron radii, proton radii, and charge radii of the atomic nuclei, we discuss the closure of nuclear shells. Our results reveal that at N=32, there is a notable abrupt change in the two-neutron separation energies of 62Zn and 64Ge. At N=34, a significant decrease in the two-neutron separation energies of 68Se and 70Kr is observed, accompanied by an abrupt change in their charge radii. Meanwhile, at N=40, clear signs of shell closure are observed. the maximum specific binding energy may correlate with the emergence of spherical nuclear structures. The shell closure not only enhances nucleon binding energy but also suppresses nuclear deformation through symmetry constraints. Our findings support N=40 as a new magic number, and some results also suggest that N=32 and N=34 could be new magic numbers. Notably, triaxial deformation plays a crucial role here. Furthermore, we explore the potential correlation between triaxiality and shape coexistence on the ground-state properties of atomic nuclei and analyze the physical mechanisms underlying these changes.
The discrepancies between current theoretical predictions and experimental data reflect limitations in modeling higher-order many-body correlations (e.g., three-nucleon forces) and highlight challenges in experimental measurements for extreme nuclear regions (including neutron-rich and near-proton-drip-line regions). Future studies could combine tensor force corrections, large-scale shell model calculations, and high-precision data from next-generation radioactive beam facilities (e.g., FRIB, HIAF) to clarify the interplay among nuclear force parameterization, proton-neutron balance, and emergent symmetries, thereby providing a more comprehensive theoretical framework for nuclear structure under extreme conditions.-
Keywords:
- shape coexistence /
- shell effect /
- new magic numbers
-
[1] Singh P, Korten W, Hagen T W, Gorgen A, Grente L, Salsac M D, Farget F, Clément E, de France G, Braunroth T, Bruyneel B, Celikovic I, Delaune O, Dewald A, Dijon A 2018 Phys. Rev. Lett. 121 192501
[2] Abusara H, Ahmad S 2017 Phys. Rev. C 96 064303
[3] Cejnar P, Jolie J, Casten R F 2010 Rev. Mod. Phys. 82 2155
[4] Norman E B, Drobizhev A, Gharibyan N, Gregorich K E, Kolomensky Yu G, Sammis B N, Scielzo N D, Shusterman J A, Thomas K J 2024 Phys. Rev. C 109 055501
[5] Majola S N T, Shi Z, Song B Y, Li Z P, Zhang S Q, Bark R A, Sharpey-Schafer J F, Aschman D G, Bvumbi S P, Bucher T D, Cullen D M, Dinoko T S, Easton J E, Erasmus N, Greenlees P T 2019 Phys. Rev. C 100 044324
[6] Yang Y L, Zhao P W, Li Z P 2023 Phys. Rev. C 107 024308
[7] Hua H, Wu C Y, Cline D, Hayes A B, Teng R, Clark R M, Fallon P, Goergen A, Macchiavelli A O, Vetter K 2004 Phys. Rev. C 69 014317
[8] Cwiok S, Heenen P H, Nazarewicz W 2005 Nature 433 705
[9] Ayangeakaa A D, Janssens R V F, Wu C Y, Allmond J M, Wood J L, Zhu S, Albers M, Almaraz-Calderon S, Bucher B, Carpenter M P, Chiara C J, Cline D, Crawford H L, Harker J, Hayes A B, Hoffman C R, Kay B P, Kolos K, Korichi A 2016 Phys. Lett. B 754 254
[10] Sheng Z Q, Guo J Y 2008 Acta Phys. Sin. 57 1557 (in Chinese) [圣宗强,郭建友 2008 物理学 57 1557]
[11] Jiao P, Guo J Y, Fang X Z 2010 Acta Phys. Sin. 59 2369 (in Chinese) [焦朋,郭建友,方向正 2010 59 2369]
[12] Wang G, Fang X Z, Guo J Y 2012 Acta Phys. Sin. 61 102101 (in Chinese) [王刚,方向正,郭建友 2012 61 102101]
[13] Nomura K, Rodriguez-Guzman R, Robledo L M 2016 Phys. Rev. C 94 044314
[14] Karim A, Siddiqui T A, Ahmad S 2022 Phys. At. Nucl. 85 588
[15] Zhang X Y, Niu Z M, Sun W, Xia X W 2023 Phys. Rev. C 108 024310
[16] Garcia-Ramos J E, Arias J M, Dukelsky J 2014 Phys. Lett. B 736 333
[17] Tong H, Zhang C, Shi Z Y, Wang H, Ni S Y 2010 Acta Phys. Sin. 59 3136 [童红,张春梅,石筑一,汪红,倪绍勇 2010 59 3136 ]
[18] Bonatsos D, Assimakis I E, Minkov N, Martinou A 2017 Phys. Rev. C 95 064326
[19] Zhi Q J 2011 Acta Phys. Sin. 60 052101 (in Chinese) [支启军 2011 60 052101]
[20] Wu X H, Ren Z X, Zhao P W 2022 Phys. Rev. C 105 L031303
[21] Gupta S, Bakshi R, Gupta S, Singh S, Bharti A, Bhat G H, Sheikh J A 2023 Eur. Phys. J. A 59 258
[22] Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp. 192 (in Chinese)[卢希庭,江栋兴,叶沿林 2000 原子核物理(北京:原子能出版社) 第192页]
[23] Wienholtz F, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, George S, Herfurth F, Holt J D, Kowalska M, Kreim S, Lunney D, Manea V, Menendez J, Neidherr D, Rosenbusch M, Schweikhard L, Schwenk A, Simonis J, Stanja J, Wolf R N, Zuber K 2013 Nature 498 346
[24] Steppenbeck D, Takeuchi S, Aoi N, Doornenbal P, Matsushita M, Wang H, Baba H, Fukuda N, Go S, Honma M, Lee J, Matsui K, Michimasa S, Motobayashi T, Nishimura D, Otsuka T, Sakurai H, Shiga Y, Soderstrom P A, Sumikama T, Suzuki H, Taniuchi R, Utsuno Y, Valiente-Dobon J J, Yoneda K 2013 Nature 502 207
[25] Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S, Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506
[26] Liu J, Niu Y F, Long W H 2020 Phys. Lett. B 806 135524
[27] Zhang W, Huang J K, Sun T T, Peng J, Zhang S Q 2024 Chin. Phys. C 48 104105
[28] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
[29] Vretenar D, Afanasjev A V, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101
[30] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470
[31] Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1
[32] Niksic T, Paar N, Vretenar D, Ring P 2014 Comput. Phys. Commun. 185 1808
[33] Ring P, Schuck P 1981 Phys. Today 36 70
[34] Staszack A, Stoitsov M, Baran A, Nazarewicz W 2010 Eur. Phys. J. A 46 85
[35] Tian Y, Ma Z Y, Ring P 2009 Phys. Lett. B 676 44
[36] Niksic T, Ring P, Vretenar D, Tian Y, Ma Z Y 2010 Phys. Rev. C 81 054318
[37] Shen S F, Wang H L, Meng H Y, Yan Y P, Shen J J, Wang F P, Jiang H B, Bao L N 2021 Acta Phys. Sin. 70 192101 (in Chinese) [沈水法,王华磊,孟海燕,阎玉鹏,沈洁洁,王飞鹏,蒋海滨,包莉娜 2021 70 192101]
[38] Meng J, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003
[39] Wang S J, Kanellakopoulos A, Yang X F, Bai S W, Billowes J, Bissell M L, Blaum K, Cheal B, Devlin C S, Garcia Ruiz R F, Han J Z, Heylen H, Kaufmann S, König K, Koszorús Á, Lechner S, Malbrunot-Ettenauer S, Nazarewicz W, Neugart R, Neyens G, Nörtershäuser W, Ratajczyk T, Reinhard P G, Rodríguez L V, Sels S, Xie L, Xu Z Y, Yordanov D T, Yu Y M 2024 Phys. Lett. B 856 138867
[40] El Adri M, Oulne M 2020 Int. J. Mod. Phys. E 29 2050089
[41] Chen C H, Li Z K, Wang X H, Li R H, Fang F, Wang Z S, Li H X 2023 Acta Phys. Sin. 72 122902 (in Chinese) [陈翠红,李占奎,王秀华,李荣华,方芳,王柱生,李海霞 2023 72 122902]
[42] Liu Y, Wang R, Mushtaq Z, Tian Y, He X, Qiu H, Chen X 2025 Chin. Phys. C 49 034103
[43] Enciu M, Liu H N, Obertelli A, Doornenbal P, Nowacki F, Ogata K, Poves A, Yoshida K, Achouri N L 2022 Phys. Rev. Lett. 129 262501
Metrics
- Abstract views: 36
- PDF Downloads: 0
- Cited By: 0