Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Test of nuclear mass models

Li Tao Li Chun-Qing Zhou Hou-Bing Wang Ning

Citation:

Test of nuclear mass models

Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning
PDF
HTML
Get Citation
  • The reliability and prediction ability of 8 global nuclear mass models is systematically analyzed in terms of the accuracy of the model and the new neutron magic number predicted by experiments based on the ground-state nuclear mass data from AME2016. The root-mean-square (RMS) deviations of nuclear mass predicted by 8 nuclear mass models are calculated by subregion, and find that the Bhagwat and WS4 models possess better accuracy to describe the existing experimental data. By analyzing the trend of the neutron shell energy gap varying with neutron number, it is found that the KTUY, WS3 and WS4 models can well represent the mutation behavior caused by the new magic number N = 32, and it is predicted that N = 32 is likely to be a new magic number in the Cl isotope chain and Ar isotope chain. By analyzing the variation trend of α decay energy in the superheavy region, it is found that the FRDM12, WS3 and WS4 models can reproduce the phenomena of subshell with N = 152 and N = 162 well, and predict the relatively long life of nuclei at the neutron number N = 184 for the isotope chain with proton number Z = 108—114. The comprehensive analysis shows that the mass model with good accuracy cannot reproduce shell evolution behavior. For example, the Bhagwat model has the same accuracy as the WS4 model, but it cannot reproduce the mutation behavior of the new magic number N = 32, 152 and 162. But the KTUY model and FRDM12 model can reproduce the new magic number behavior of N = 32, 152 and 162, respectively, although the RMS deviation is slightly larger. The RMS deviation of WS4 model is small and can describe the shell evolution behavior in the nuclear mass well.
      Corresponding author: Li Tao, litao@gxnu.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1867212), the National Natural Science Foundation of China (Grant Nos. 11965003, 11505035, 11675266), the Natural Science Foundation of Guangxi (Grant Nos. 2017GXNSFAA198160, 2017GXNSFGA198001), and the Basic Scientific Research Ability of Young and Middle-aged Teachers in Guangxi Colleges and Universities, China (Grant No. 2019KY0061)
    [1]

    Roubin A, Atanasov D, Blaum K, George S, Herfurth F, Kisler D, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Mougeot M, Neidherr D, Rosenbusch M, Schweikhard L, Welker A, Wienholtz F, Wolf R N, Zuber K 2017 Phys. Rev. C 96 014310Google Scholar

    [2]

    Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322Google Scholar

    [3]

    Wang Y Z, Gao Y H, Cui J P, Gu J Z 2020 Commun. Theor. Phys. 72 025303Google Scholar

    [4]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [5]

    Xu X, Wang M, Zhang Y H, Xu H S, Shuai P, Tu X L, Yuri A L, Zhou X H, Sun B H, Yuan Y J, Xia J W, Yang J C, Klaus B, Chen R J, Chen X C, Fu C Y, Ge Z, Hu Z G, Huang W J, Liu D W, Lan Y H, Ma X W, Mao R S, Uesaka T, Xiao G Q, Xing Y M, Yamaguchi T, Yamaguchi Y, Zeng Q, Yan X L, Zhao H W, Zhao T C, Zhang W, Zhan W L 2015 Chin. Phys. C 39 104001Google Scholar

    [6]

    Rosenbusch M, Ascher P, Atanasov D, Barbieri C, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, Cipollone A, George S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Navrátil P, Neidherr D, Schweikhard L, Somà V, Stanja J, Wienholtz, F, Wolf R N, Zuber K 2015 Phys. Rev. Lett. 114 202501Google Scholar

    [7]

    Reiter M P, Ayet San Andrés S, Dunling E, Kootte B, Leistenschneider E, Andreoiu C, Babcock C, Barquest B R, Bollig J, Brunner T, Dillmann I, Finlay A, Gwinner G, Graham L, Holt J D, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, McKay J E, Paul S F, Steinbrügge R, Thompson R, Tracy J L, Jr, Wieser M E, Will C, Dickel T, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. C 98 024310Google Scholar

    [8]

    Leistenschneider E, Reiter M P, Ayet San Andrés S, Kootte B, Holt J D, Navrátil P, Babcock C, Barbieri C, Barquest B R, Bergmann J, Bollig J, Brunner T, Dunling E, Finlay A, Geissel H, Graham L, Greiner F, Hergert H, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, Leach K G, Lippert W, McKay J E, Paul S F, Schwenk A, Short D, Simonis J, Somà V, Steinbrügge R, Stroberg S R, Thompson R, Wieser M E, Will C, Yavor M, Andreoiu C, Dickel T, Dillmann I, Gwinner G, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. Lett. 120 062503Google Scholar

    [9]

    Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506Google Scholar

    [10]

    Mougeot M, Atanasov D, Blaum K, Chrysalidis K, Goodacre T D, Fedorov D, Fedosseev V, George S, Herfurth F, Holt J D, Lunney D, Manea V, Marsh B, Neidherr D, Rosenbusch M, Rothe S, Schweikhard L, Schwenk A, Seiffert C, Simonis J, Stroberg S R, Welker A, Wienholtz F, Wolf R N, Zuber K 2018 Phys. Rev. Lett. 120 232501Google Scholar

    [11]

    Manea V, Karthein J, Atanasov D, Bender M, Blaum K, Cocolios T E, Eliseev S, Herlert A, Holt J D, Huang W J, Litvinov Y A, Lunney D, Menéndez J, Mougeot M, Neidherr D, Schweikhard L, Schwenk A, Simonis J, Welker A, Wienholtz F, Zuber K 2020 Phys. Rev. Lett. 124 092502Google Scholar

    [12]

    Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M, Stoitsov M 2012 Nature 486 509Google Scholar

    [13]

    Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207Google Scholar

    [14]

    Hamilton J H, Hofmann S, Oganessian Y T 2013 Annu. Rev. Nucl. Part. Sci. 63 383Google Scholar

    [15]

    周善贵 2014 物理 43 817Google Scholar

    Zhou S G 2014 Physics 43 817Google Scholar

    [16]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [17]

    Li P C, Zhang H F, Wang Y J 2017 Chin. Phys. C 41 114103Google Scholar

    [18]

    Düllmann C E, Block M 2018 Sci. Am. 318 46Google Scholar

    [19]

    Nazarewicz W 2018 Nat. Phys. 14 537Google Scholar

    [20]

    李竹, 牛中明, 孙保华, 王宁, 孟杰 2012 61 072601Google Scholar

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601Google Scholar

    [21]

    何建军, 周小红, 张玉虎 2013 物理 42 484

    He J J, Zhou X H, Zhang Y H 2013 Physics 42 484

    [22]

    李竹, 孙保华, 孟杰 2013 物理 42 505

    Li Z, Sun B H, Meng J 2013 Physics 42 505

    [23]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšic T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [24]

    Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330Google Scholar

    [25]

    Li Z, Miu Z M, Sun B H 2019 Sci. China, Ser. G 62 982011Google Scholar

    [26]

    唐晓东, 李阔昂 2019 物理 48 633Google Scholar

    Tang X D, Li K A 2019 Physics 48 633Google Scholar

    [27]

    Möler P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

    [28]

    王猛, 张玉虎, 周小红 2020 中国科学: 物理学力学天文学 50 052006Google Scholar

    Wang M, Zhang Y H, Zhou X H 2020 Sci. Sin.Phys. Mech. Astron. 50 052006Google Scholar

    [29]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [30]

    Möler P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1Google Scholar

    [31]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [32]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304Google Scholar

    [33]

    Liu M, Wang N, Deng Y G, Wu X Z 2011 Phys. Rev. C 84 014333Google Scholar

    [34]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [35]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [36]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 024308Google Scholar

    [37]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 061302(RGoogle Scholar

    [38]

    Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337Google Scholar

    [39]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [40]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1Google Scholar

    [41]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23(RGoogle Scholar

    [42]

    Zuker A P 2008 Rev. Mex. Fís. 54 129

    [43]

    Nayak R C, Satpathy L 2012 At. Data Nucl. Data Tables 98 616Google Scholar

    [44]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 89 024311Google Scholar

    [45]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 90 017302Google Scholar

    [46]

    Sobiczewski A, Litvinov Y A, Palczewski M 2018 At. Data Nucl. Data Tables 119 1Google Scholar

    [47]

    Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B H 2014 Phys. Rev. C 90 014303Google Scholar

    [48]

    Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China, Ser. G 55 2414Google Scholar

    [49]

    Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311Google Scholar

  • 图 1  八个核质量模型对轻核(8 ≤ Z < 28)、中等-I(28 ≤ Z < 50)、中等-II(50 ≤ Z < 82)、重核(82 ≤ Z < 100)以及超重(Z ≥ 100>)五个区域质量描述的均方根偏差

    Figure 1.  Root-mean-square deviations of the mass of light (8 ≤ Z < 28), medium-I (28 ≤ Z < 50), medium-II (50 ≤ Z < 82), heavy (82 ≤ Z < 100), and super-heavy (Z ≥ 100) are calculated by the 8 nuclear mass models.

    图 2  八个核质量模型的理论值与实验值的均方根偏差随ε的变化趋势

    Figure 2.  Root-mean-square deviation between the predictions of the 8 nuclear mass models and the experimental values varies with the ε.

    图 3  K, Ca, Sc, Ti和V同位素链的中子壳能隙随中子数的变化趋势

    Figure 3.  Variation trend of neutron shell gaps in K, Ca, Sc, Ti and V isotope chains with neutron number.

    图 4  八个核质量模型计算的K, Ca, Sc, Ti和V同位素链的中子壳能隙随中子数的变化趋势

    Figure 4.  Neutron shell gaps of K, Ca, Sc, Ti and V isotopic chains calculated by 8 nuclear mass models vary with the neutron number

    图 5  Cl和Ar同位素链中子壳能隙随中子数的变化趋势, 竖线表示误差

    Figure 5.  Variation trend of neutron shell gaps of Cl and Ar isotope chains with neutron number, the vertical bar represents the error.

    图 6  质子数$ Z=100-110 $为偶数同位素链的α衰变能随中子数的变化趋势

    Figure 6.  Alpha decay energy of even isotope chains for the proton number $ Z=100-110 $ vary with the neutron number.

    图 7  八个核质量模型计算的质子数$ Z=100-110 $为偶数同位素链的α衰变能随中子数的变化趋势

    Figure 7.  Alpha decay energy of even isotope chains for the proton number Z = 100-110 calculated by 8 nuclear mass models vary with the neutron number.

    图 8  FRDM12和WS4模型计算的质子数$Z=112- $$ 124$为偶数同位素链的α衰变能随中子数的变化趋势, 竖线表示误差

    Figure 8.  Alpha decay energy of even isotope chains for the proton number Z = 100–110 calculated by the FRDM12 and WS4 models vary with the neutron number, the vertical bar represents the error.

    表 1  八个核质量模型的基态质量、单中子分离能、单质子分离能、双中子分离能及双质子分离能的均方根偏差

    Table 1.  Root-mean-square deviations of the ground state mass, single-neutron separation energy, single-proton separation energy, two-neutron separation energy and two-proton separation energy of the 8 nuclear mass models.

    模型M/MeVSn/MeVSp/MeVS2n/MeVS2p/MeV
    KTUY0.7240.3060.3670.3830.527
    FRDM120.5990.3510.3680.4550.469
    HFB270.5170.4240.4460.4230.464
    DZ310.4220.2900.3070.3420.379
    INM120.3810.3720.3690.3750.386
    WS30.3430.2740.3020.2960.358
    WS40.3020.2600.2780.2760.326
    Bhagwat0.3010.2820.2960.3060.329
    DownLoad: CSV
    Baidu
  • [1]

    Roubin A, Atanasov D, Blaum K, George S, Herfurth F, Kisler D, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Mougeot M, Neidherr D, Rosenbusch M, Schweikhard L, Welker A, Wienholtz F, Wolf R N, Zuber K 2017 Phys. Rev. C 96 014310Google Scholar

    [2]

    Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322Google Scholar

    [3]

    Wang Y Z, Gao Y H, Cui J P, Gu J Z 2020 Commun. Theor. Phys. 72 025303Google Scholar

    [4]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [5]

    Xu X, Wang M, Zhang Y H, Xu H S, Shuai P, Tu X L, Yuri A L, Zhou X H, Sun B H, Yuan Y J, Xia J W, Yang J C, Klaus B, Chen R J, Chen X C, Fu C Y, Ge Z, Hu Z G, Huang W J, Liu D W, Lan Y H, Ma X W, Mao R S, Uesaka T, Xiao G Q, Xing Y M, Yamaguchi T, Yamaguchi Y, Zeng Q, Yan X L, Zhao H W, Zhao T C, Zhang W, Zhan W L 2015 Chin. Phys. C 39 104001Google Scholar

    [6]

    Rosenbusch M, Ascher P, Atanasov D, Barbieri C, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, Cipollone A, George S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Navrátil P, Neidherr D, Schweikhard L, Somà V, Stanja J, Wienholtz, F, Wolf R N, Zuber K 2015 Phys. Rev. Lett. 114 202501Google Scholar

    [7]

    Reiter M P, Ayet San Andrés S, Dunling E, Kootte B, Leistenschneider E, Andreoiu C, Babcock C, Barquest B R, Bollig J, Brunner T, Dillmann I, Finlay A, Gwinner G, Graham L, Holt J D, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, McKay J E, Paul S F, Steinbrügge R, Thompson R, Tracy J L, Jr, Wieser M E, Will C, Dickel T, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. C 98 024310Google Scholar

    [8]

    Leistenschneider E, Reiter M P, Ayet San Andrés S, Kootte B, Holt J D, Navrátil P, Babcock C, Barbieri C, Barquest B R, Bergmann J, Bollig J, Brunner T, Dunling E, Finlay A, Geissel H, Graham L, Greiner F, Hergert H, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, Leach K G, Lippert W, McKay J E, Paul S F, Schwenk A, Short D, Simonis J, Somà V, Steinbrügge R, Stroberg S R, Thompson R, Wieser M E, Will C, Yavor M, Andreoiu C, Dickel T, Dillmann I, Gwinner G, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. Lett. 120 062503Google Scholar

    [9]

    Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506Google Scholar

    [10]

    Mougeot M, Atanasov D, Blaum K, Chrysalidis K, Goodacre T D, Fedorov D, Fedosseev V, George S, Herfurth F, Holt J D, Lunney D, Manea V, Marsh B, Neidherr D, Rosenbusch M, Rothe S, Schweikhard L, Schwenk A, Seiffert C, Simonis J, Stroberg S R, Welker A, Wienholtz F, Wolf R N, Zuber K 2018 Phys. Rev. Lett. 120 232501Google Scholar

    [11]

    Manea V, Karthein J, Atanasov D, Bender M, Blaum K, Cocolios T E, Eliseev S, Herlert A, Holt J D, Huang W J, Litvinov Y A, Lunney D, Menéndez J, Mougeot M, Neidherr D, Schweikhard L, Schwenk A, Simonis J, Welker A, Wienholtz F, Zuber K 2020 Phys. Rev. Lett. 124 092502Google Scholar

    [12]

    Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M, Stoitsov M 2012 Nature 486 509Google Scholar

    [13]

    Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207Google Scholar

    [14]

    Hamilton J H, Hofmann S, Oganessian Y T 2013 Annu. Rev. Nucl. Part. Sci. 63 383Google Scholar

    [15]

    周善贵 2014 物理 43 817Google Scholar

    Zhou S G 2014 Physics 43 817Google Scholar

    [16]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [17]

    Li P C, Zhang H F, Wang Y J 2017 Chin. Phys. C 41 114103Google Scholar

    [18]

    Düllmann C E, Block M 2018 Sci. Am. 318 46Google Scholar

    [19]

    Nazarewicz W 2018 Nat. Phys. 14 537Google Scholar

    [20]

    李竹, 牛中明, 孙保华, 王宁, 孟杰 2012 61 072601Google Scholar

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601Google Scholar

    [21]

    何建军, 周小红, 张玉虎 2013 物理 42 484

    He J J, Zhou X H, Zhang Y H 2013 Physics 42 484

    [22]

    李竹, 孙保华, 孟杰 2013 物理 42 505

    Li Z, Sun B H, Meng J 2013 Physics 42 505

    [23]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšic T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [24]

    Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330Google Scholar

    [25]

    Li Z, Miu Z M, Sun B H 2019 Sci. China, Ser. G 62 982011Google Scholar

    [26]

    唐晓东, 李阔昂 2019 物理 48 633Google Scholar

    Tang X D, Li K A 2019 Physics 48 633Google Scholar

    [27]

    Möler P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

    [28]

    王猛, 张玉虎, 周小红 2020 中国科学: 物理学力学天文学 50 052006Google Scholar

    Wang M, Zhang Y H, Zhou X H 2020 Sci. Sin.Phys. Mech. Astron. 50 052006Google Scholar

    [29]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [30]

    Möler P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1Google Scholar

    [31]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [32]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304Google Scholar

    [33]

    Liu M, Wang N, Deng Y G, Wu X Z 2011 Phys. Rev. C 84 014333Google Scholar

    [34]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [35]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [36]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 024308Google Scholar

    [37]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 061302(RGoogle Scholar

    [38]

    Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337Google Scholar

    [39]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [40]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1Google Scholar

    [41]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23(RGoogle Scholar

    [42]

    Zuker A P 2008 Rev. Mex. Fís. 54 129

    [43]

    Nayak R C, Satpathy L 2012 At. Data Nucl. Data Tables 98 616Google Scholar

    [44]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 89 024311Google Scholar

    [45]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 90 017302Google Scholar

    [46]

    Sobiczewski A, Litvinov Y A, Palczewski M 2018 At. Data Nucl. Data Tables 119 1Google Scholar

    [47]

    Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B H 2014 Phys. Rev. C 90 014303Google Scholar

    [48]

    Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China, Ser. G 55 2414Google Scholar

    [49]

    Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311Google Scholar

  • [1] Jiao Bao-Bao. Nucleus density based new relationship of nuclear charge radius. Acta Physica Sinica, 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [2] Lou Yue-Shen, Guo Wen-Jun. Prediction of unknown nuclear stability by Bayesian deep neural network. Acta Physica Sinica, 2022, 71(10): 102101. doi: 10.7498/aps.71.20212387
    [3] Liu Zhao-Bin, Li Kai, Zeng Tian-Hai, Wang Feng, Song Xin-Bing, Shao Bin, Zou Jian. Influence of hydrogen-like nucleus mass on electronic state. Acta Physica Sinica, 2021, 70(7): 070301. doi: 10.7498/aps.70.20201754
    [4] Jin Dong-Yue, Chen Hu, Wang You, Zhang Wan-Rong, Na Wei-Cong, Guo Bin, Wu Ling, Yang Shao-Meng, Sun Sheng. Process deviation based electrical model of voltage controlled magnetic anisotropy magnetic tunnel junction and its application in read/write circuits. Acta Physica Sinica, 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [5] Li Jing-Tian, Wang Jian-Lu, Zhang Bang-Qiang, Rong Xi-Ming, Ning Xi-Jing. A statistical model to predict the steady-state creep rate. Acta Physica Sinica, 2014, 63(2): 028101. doi: 10.7498/aps.63.028101
    [6] Li Zhu, Niu Zhong-Ming, Sun Bao-Hua, Wang Ning, Meng Jie. WLW mass model in nuclear r-process calculations. Acta Physica Sinica, 2012, 61(7): 072601. doi: 10.7498/aps.61.072601
    [7] Feng You-Jun, Lin Zhong-Xiao, Zhang Rong-Zhu. The influence of root mean square phase gradient of continuous phase plate on smoothing focal spot. Acta Physica Sinica, 2011, 60(10): 104202. doi: 10.7498/aps.60.104202
    [8] Ling Rui-Liang, Feng Jin-Fu. Exact wave function of the coupled harmonic oscillator with time-dependent mass and frequency. Acta Physica Sinica, 2009, 58(4): 2164-2167. doi: 10.7498/aps.58.2164
    [9] Ding Bin-Gang, Zhang Da-Li, Lu Ding-Hui. Stability of traditional neutron magic numbers. Acta Physica Sinica, 2009, 58(2): 865-870. doi: 10.7498/aps.58.865
    [10] Li Yong-Qing, Li Xi-Guo, Liu Zi-Yu, Luo Pei-Yan, Zhang Peng-Ming. New vortex solutions of Jackiw-Pi model. Acta Physica Sinica, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [11] The disappearance of conventional magic numbers and the appearance of new numbers near drip-line region studied using relativistic mean-field plus BCS model. Acta Physica Sinica, 2007, 56(12): 6905-6910. doi: 10.7498/aps.56.6905
    [12] GUAN PENG, LIU YI-HUA. A NEW MODEL FOR INDUCED ANISOTROPY IN AMORPHOUS ALLOYS. Acta Physica Sinica, 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [13] LU MING, ZHANG QIANG-JI. A NEW MODEL FOR Ta2O5/Ta INTERFACE ANALYSIS. Acta Physica Sinica, 1989, 38(11): 1771-1777. doi: 10.7498/aps.38.1771
    [14] LAN TIAN, XU FEI-YUE. A NEW ATOMIC STRUCTURE MODEL OF Si {001} 2×1 SURFACE. Acta Physica Sinica, 1989, 38(7): 1069-1076. doi: 10.7498/aps.38.1069
    [15] XING DING-YU, YUAN JIAN. MEAN-SQUARE DISPLACEMENTS OF ATOMS IN A SEMI-INFINITE SUPERLATTICE. Acta Physica Sinica, 1986, 35(6): 812-818. doi: 10.7498/aps.35.812
    [16] QIAN KUN-MING, LIN ZHAO-HUA, DAI DAO-SHENG. NEW MODELS FOR EXCITATION OF SPIN WAVE RESONANCE. Acta Physica Sinica, 1983, 32(12): 1547-1556. doi: 10.7498/aps.32.1547
    [17] DU DONG-SHENG. A NEW POSSIBLE MODEL FOR THE STRUCTURE OF HADRONS. Acta Physica Sinica, 1976, 25(3): 265-267. doi: 10.7498/aps.25.265
    [18] LI XIAO-YUAN, DU DONG-SHENG, WU JI-MIN. A POSSIBLE MESON SPECTRUM AND THE PRODUCTION AND DECAY OF THE NEW PARTICLES IN THE SU3(1)×SU3(2) MODEL. Acta Physica Sinica, 1976, 25(6): 541-545. doi: 10.7498/aps.25.541
    [19] . Acta Physica Sinica, 1975, 24(5): 351-365. doi: 10.7498/aps.24.351
    [20] LI CHENG-WU. MASSES OF LIGHT NUCLEI. Acta Physica Sinica, 1957, 13(1): 30-57. doi: 10.7498/aps.13.30
Metrics
  • Abstract views:  5986
  • PDF Downloads:  186
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2020
  • Accepted Date:  30 December 2020
  • Available Online:  07 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回
Baidu
map