Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on α decay properties of superheavy nuclei with Z=118~120

Xing Feng-Zhu Le Xian-Kai Wang Nan Wang Yan-Zhao

Citation:

Study on α decay properties of superheavy nuclei with Z=118~120

Xing Feng-Zhu, Le Xian-Kai, Wang Nan, Wang Yan-Zhao
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • An unified fission model (UFM) has been improved by considering the nuclear deformation effect and introducing an analytical expression of the preformation factor. The improved version of the UFM by considering the nuclear deformation effect is called IMUFM1. Based on the IMUFM1, the further improved version is called IMUFM2 by introducing an analytical expression of the preformation factor. Within the UFM, the IMUFM1 and the IMUFM2, the α decay half-lives of heavy and superheavy nuclei with Z≥92 are systematically calculated. By calculating the standard deviation between the calculated ones and the experimental data, it is found that the accuracy of the IMUFM1 improved 2.45% than this of the UFM. The accuracy of the IMUFM2 will be further improved 32.09% than this of the IMUFM1, which implies the nuclear deformation effect and the preformation factor is important in prediction. Then, the α decay half-lives of Z=118~120 isotopes are predicted within the IMUFM1 and the IMUFM2 by inputting the α decay energies that extracted from the sinite-range droplet model (FRDM), the Weizsäcker-Skyrme-4 (WS4) model and the Koura-Tachibaba-Uno-Yamads (KTUY) formula, respectively. By observing the evolution of the α decay half-lives, it is found that the evolution trends within the mentioned three kinds of mass models are consistent and the shell effect are shown at N=178 and 184, but the order of magnitude are different with the different kinds of mass models. Meanwhile, the dominant decay modes of the superheavy nuclei with N<186 are α decay by comparing the half-lives between α decay and spontaneous fission. So the study of α decay of superheavy nuclei is meaningful. Finally, the decay modes of 296Og, 297119 and 298120 α decay chains are predicted within the IMUFM1 and the IMUFM2 by using these there kinds of mass models, which shown that the predictions within the WS4 and KTUY mass models are more consistent with the experimental measurements. Within the FRDM2012 mass model, although the predictions of 288Fl, 285Nh and 286Fl within the IMUFM1 mass model are not consistent with the experimental measurements, the prediction of 288Fl within the IMUFM2 is good agreement with the experimental measurement, which once again verified the rationality and reliability of the IMUFM2. The predictions of this article might be helpful for identifying new nuclide in future experiments.
  • [1]

    Hofmann S, Munzenberg G. 2000Rev. Mod. Phys. 72733.

    [2]

    Morita K, Morimoto K, Kaji D et al. 2004J. Phys. Soc. Jpn. 732593.

    [3]

    Morita K, Morimoto K, Kaji D et al. 2012Rev. Mod. Phys. 81103201.

    [4]

    Oganessian Y T, Abdullin F S, Bailey P D et al. 2010Phys. Rev. Lett, 104142502.

    [5]

    Zhou S G, 2017Nucl. Phys. Rev. 34 318-331(in Chinese)[周善贵. 2017原子核物理评论34 318-331]

    [6]

    Oganessian Y T, Utyonkov V K, Lobanov Y V et al. 2006Phys. Rev. C 74044602.

    [7]

    Oganessian Y T, Utyonkov V K. 2015Nucl. Phys. A 94462.

    [8]

    Oganessian Y T, Sobiczewski A, Ter-akopian G M. 2017Phys. Scr. 92023003.

    [9]

    Oganessian Y T, Utyonkov V K, Lobanov Y V et al. 2009Phys. Rev. C 79 024603.

    [10]

    Kozulin E M, Knyazheva G N, Itkis I M et al. 2010Phys. Lett. B, 686227.

    [11]

    Li J X, Zhang H F. 2022Phys. Rev. C 105054606.

    [12]

    Li J X, Zhang H F. 2022Phys. Rev. C 106034613.

    [13]

    Li F, Zhu L, Wu Z H et al. 2018Phys. Rev. C 98014618.

    [14]

    Zhang M H, Zhang Y H, Zou Y et al. 2024Phys. Rev. C 109014622.

    [15]

    Varga K, Lovas R G, Liotta R J. 1992Phys. Rev. Lett. 6927.

    [16]

    Wauters J, Bijnens N, Denooven P et al. 1994Phys. Rev. Lett. 721329.

    [17]

    Andeyev A N, Huyse M, Duppen P V et al. 2000Nature 405430.

    [18]

    Khuyagbaatar J, Yakushev A, Dullmann C E et al. 2014Phys. Rev. Lett. 112172501.

    [19]

    Oganessian Y T, Utyonkov V K, Shumeiko M V et al. 2024Phys. Rev. C 109054307.

    [20]

    Gamow G. 1928Z. Phys. 51204.

    [21]

    Gurney R W, Condon E U. 1928Nature 122439.

    [22]

    Malik S S, Raj K Gupts, 1989Phys. Rev. C 39 1992.

    [23]

    Buck B, Merchant A C, Perez S M et al., 1993 At. Data Nucl. Data Tables 54 53

    [24]

    Mirea M. 1996Phys. Rev. C 54302.

    [25]

    Ren Z Z, Xu C, 2006Nucl. Phys. Rev. 23 369(in Chinese)[任中洲,许昌. 2023原子核物理评论23 369]

    [26]

    Royer G. 2000J. Phys. G. Nucl. Part. Phys. 261149.

    [27]

    Zhang H F, Royer G, Wang Y J et al., 2009Phys. Rev. C 80 057301.

    [28]

    Zhang H F, Bao X J, Wang J M et al., 2013Nucl. Phys. Rev. 30 241(in Chinese)[张海飞,包小军,王佳眉等. 2013原子核物理评论30 241]

    [29]

    Zou Y T, Pan X, Liu H M et al., 2021Phys. Scr. 96075301.

    [30]

    Zhang K L, Han S X, Yue S J et al., 2024Acta. Phys. Sin. 73 062101(in Chinese)[张凯林,韩胜贤,岳生俊等. 2024 73 062101]

    [31]

    Wang Y Z, Cui J P, Liu J et al., 2017Atomic Energy Science Technology. 51 1544(in Chinese)[王艳召,崔建坡,刘军等. 2017原子能科学技术51 1544]

    [32]

    Sobiczewski A, Patyk Z, Cwiok S. 1989Phys. Lett. B 224279.

    [33]

    Royer G, 2000 J. Phys. G. Nucl. Part. Phys. 261149.

    [34]

    Poenaru D N, Nagame Y, Gherghescu R A et al. 2002Phys. Rev. C 66049902.

    [35]

    Poenaru D N, Gherghescu R A, Carjan N. 2007Eur. Lett. 7762001.

    [36]

    Eunkyoung S, Yeunhwan L, Chang H H et al. 2016Phys. Rev. C 94 024320.

    [37]

    Qian Y B, Ren Z Z. 2012Phys. Rev. C 85027306.

    [38]

    Sahu B, Paira R, Rath B, 2013Nucl. Phys. A 908 40.

    [39]

    Akrawy D T, Ahmed A H. 2019Phys. Rev. C 100 044618.

    [40]

    Xing F Z, Qi H, Cui J P et al. 2022Nucl. Phys. A 1028122528.

    [41]

    Balasubramaniam M, Gupta Raj K. 1999Phys. Rev. C 60064316.

    [42]

    Santhosh K P, Biju R K. 2009J. Phys. G. Nucl. Part. Phys. 36015107.

    [43]

    Balasubramaniam M, Arunachaiam N. 2005Phys. Rev. C 71014603.

    [44]

    Dong J M, Zhang H F, Zuo W et al. 2010Chin. Phys. C 34 182.

    [45]

    Dong J M, Zhang H F, Li J Q et al. 2009Eur. Phys. J. A 41197.

    [46]

    Zhu T B, Hu B T, Zhang H F et al. 2011Commun. Theor. Phys. 55 307.

    [47]

    Xing F Z, Cui J P, Wang Y Z et al. 2021Chin. Phys. C 45 124105.

    [48]

    Santhosh K P, 2022Phys. Rev. C 106 054604.

    [49]

    Zhu D X, Liu H M, Xu Y Y et al, 2022Chin. Phys. C 46 044106.

    [50]

    Zhu D X, Li M, Xu Y Y et al., 2022Phys. Scr. 97 095304.

    [51]

    Zhang H F, Royer G. 2008Phys. Rev. C 77054318.

    [52]

    Zhang H F, Royer G, Wang Y J et al. 2009Phys. Rev. C 80057301.

    [53]

    Zhang S, Zhang Y L, Cui J P et al. 2017Phys. Rev. C 95014311.

    [54]

    Santhosh K P, Jose Tinu Ann, 2021Phys. Rev. C 104 064604.

    [55]

    Xing F Z, Cui J P, Wang Y Z et al., 2022Acta. Phys. Sin. 71 062301(in Chinese)[邢凤竹,崔建坡,王艳召等,2022 71 062301]

    [56]

    Wang Y Z, Xing F Z, Cui J P et al., 2023Chin. Phys. C 47 084101.

    [57]

    Qi L J, Zhang D M, Luo S et al., 2023Phys. Rev. C 108 014325.

    [58]

    Chandran Megha, Santhosh K P, 2023Phys. Rev. C 107 024614.

    [59]

    Wang Y Z, Xing F Z, Zhang W H et al., 2024Phys. Rev. C 110 064305.

    [60]

    Nakada H, Sugiura K. 2014Prog. Theor. Exp. Phys. 2014:033D02.

    [61]

    Thakur S, Kumar S, Kumar R,. 2013Braz. J. Phys. 43152.

    [62]

    Mo Q H, Liu M, Wang N, 2014Phys. Rev. C 90 024320.

    [63]

    Brewer N T, Utyonkov V K, Rykaczewski K P et al. 2018Phys. Rev. C 98024317.

    [64]

    Bao X J. 2019Phys. Rev. C 100011601(R).

    [65]

    Sobiczewski A. 2016Phys. Rev. C 94051302(R).

    [66]

    Mohr P. 2017Phys. Rev. C 95011302(R).

    [67]

    Santhosh K P, Jost T A, Deepak N K. 2021Phys. Rev. C 103064612.

    [68]

    Nithya C, Santhosh K P. 2023Phys. Rev. C 108014606.

    [69]

    Blocki J, Randruo J, Swiatecki W J et al., 1977 Ann. Phys. 105 427.

    [70]

    Bass R, 1973Phys. Lett. B 47 139.

    [71]

    Bass R, 1974Nucl. Phys. A 231 45.

    [72]

    Bass R, 1973Phys. Rev. Lett. 39 265.

    [73]

    Reisdorf W, 1994J. Phys. G:Nucl. Part. Phys. 20 1297.

    [74]

    Winther A, 1995Nucl. Phys. A 594 203.

    [75]

    Wong C Y, 1973Phys. Rev. Lett. 31 766.

    [76]

    Wang M, Huang J W, Kondev F G et al., 2021Chin. Phys. C 45 03003.

    [77]

    Kondev F G, Wang M, Huang J W et al., 2021Chin. Phys. C 45 03001.

    [78]

    M\ "oller P, Nix J R, Myers W D et al. 1995At. Data Nucl. Data Tables 59185.

    [79]

    M\" oller P, Sierk A J, Ichikawa T et al. 2016At. Data Nucl. Data Tables 109-1101.

    [80]

    Wang N, Liu M, Wu X Z et al. 2014Phys. Lett. B 734215.

    [81]

    Koura H, Tachibana T, Uno M et al. 2005Prog. Theor. Phys. 113305.

    [82]

    Kirson M W, 2008Nuclear Phys. A 798 29.

    [83]

    Bhagwat A, 2014Phys. Rev. C 90 064306.

    [84]

    Goriely S. 2015Nucl. Phys. A,93368.

    [85]

    Zhang K Y, Cheoun M K, Choi Y B et al. 2022At. Data Nucl. Data Tables,144101488.

    [86]

    Wang Y Z, Wang S J, Hou Z Y et al. 2015Phys. Rev. C 92064301.

    [87]

    Swiatecki W J. 1955Physical Review Journals Archive,100937.

    [88]

    Xu C, Ren Z Z. 2005Phys. Rev. C 71014309.

    [89]

    Ren Z Z, Xu C. 2005Nucl. Phys. A 75964.

    [90]

    Bao X J, Guo S Q, Zhang H F. 2015J. Phys. G. Nucl. Part. Phys. 42085101.

  • [1] Xia Jin-Ge, Li Wei-Feng, Fang Ji-Yu, Niu Zhong-Ming. An empirical formula of nuclear β-decay half-lives. Acta Physica Sinica, doi: 10.7498/aps.73.20231653
    [2] Liu Chao, Liu Shi-Long, Yang Yi, Feng Jing, Li Yu-Zhao. K X-ray emission and kinetic energy-nuclear charge relationship of 252Cf spontaneous fission. Acta Physica Sinica, doi: 10.7498/aps.73.20240563
    [3] Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao. Influence of strong laser field on nuclear α decay. Acta Physica Sinica, doi: 10.7498/aps.73.20231627
    [4] He Tie1\2\3, Xiao Jun2\3, An Li2\3, Yang Jian2\3, Zheng Pu2\3A novel method to measure prompt fission neutron spectrum based on fission γ tagging technique. Acta Physica Sinica, doi: 10.7498/aps.67.20180563
    [5] Li Yong-Ming,  Wang Liang,  Chen Xiang-Lin,  Ruan Nian-Shou,  Zhao De-Shan. Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission. Acta Physica Sinica, doi: 10.7498/aps.67.20181073
    [6] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, doi: 10.7498/aps.61.232502
    [7] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, doi: 10.7498/aps.57.1569
    [8] Jia Fei, Xu Hu-Shan, Zheng Chuan, Fan Rui-Rui, Zhang Xue-Ying, Li Jun-Qing, Scheid W.. Study of the mechanism for synthesizing superheavy nuclei based on dinuclear system. Acta Physica Sinica, doi: 10.7498/aps.56.2047
    [9] Jia Fei, Xu Hu-Shan, Huang Tian-Heng, Yuan Xiao-Hua, Zhang Hong-Bin, Li Jun-Qing, W.Scheid. Study of mass distributions of quasifission products based on dinuclear system. Acta Physica Sinica, doi: 10.7498/aps.56.1347
    [10] QING CHENG-RUI, HE ZUO-XIU. A DISCUSSION OF THE ATOMIC EFFECT IN THE β-DECAY OF 3H AND THE NEUTRINO MASS. Acta Physica Sinica, doi: 10.7498/aps.31.654
    [11] . Acta Physica Sinica, doi: 10.7498/aps.24.105
    [12] WANG YU-SHENG, XU JING-CHENG. PROBABILITY OF PROMPT NEUTRON EMISSION FROM SPONTANEOUS FISSION OF Pu240. Acta Physica Sinica, doi: 10.7498/aps.23.38
    [13] HUANG SHENG-NIAN, CHEN JIN-GUI, HAN HONG-YIN. MULTIPLICITY OF PROMPT NEUTRONS FROM SPONTANEOUS FISSION OF URANIUM-238. Acta Physica Sinica, doi: 10.7498/aps.23.46
    [14] . Acta Physica Sinica, doi: 10.7498/aps.22.111
    [15] ZHUO YI-ZHONG, LI ZE-QING, LI MING-SHOU. THE PAIRING EFFECTS OF NUCLEI ON THE ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS. Acta Physica Sinica, doi: 10.7498/aps.22.136
    [16] О ДАЛЬНЕЙШЕМ ИССЛЕДОВАНИИ СПЕКТРОВ НЕЙТРОНОВ ДЕЛЕНИЯ. Acta Physica Sinica, doi: 10.7498/aps.21.546
    [17] ZHU YEI-ZHUNG, LEE TSE-CHING. ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS AND THE STRUCTURE AT THE SADDLE POINT. Acta Physica Sinica, doi: 10.7498/aps.20.1003
    [18] . Acta Physica Sinica, doi: 10.7498/aps.20.938
    [19] CHANG LI-NING, AN IN, CHEN TING-GIN, DAI YUAN-BENG. FOUR BODY DECAY OF Σ IN A COMPOSITE MODEL. Acta Physica Sinica, doi: 10.7498/aps.18.264
    [20] РАСПАД Gd159——ИССЛЕДОВАНИЕ ВОЗБУЖДЕННЫХ УРОВНЕЙ СИЛЬНО ДЕФОРМИРОВАННЫХ ЯДЕР РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ (Ⅱ). Acta Physica Sinica, doi: 10.7498/aps.17.411
Metrics
  • Abstract views:  49
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  24 April 2025

/

返回文章
返回
Baidu
map