Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on α decay properties of superheavy nuclei with Z = 118–120

XING Fengzhu LE Xiankai WANG Nan WANG Yanzhao

Citation:

Research on α decay properties of superheavy nuclei with Z = 118–120

XING Fengzhu, LE Xiankai, WANG Nan, WANG Yanzhao
cstr: 32037.14.aps.74.20240907
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • An unified fission model (UFM) has been improved by considering the nuclear deformation effect and introducing an analytical expression of preformation factor. The improved version of the UFM by taking into consideration the nuclear deformation effect is named IMUFM1. Based on the IMUFM1, the further improved version is termed IMUFM2, which incorporates an analytical expression of the preformation factor. Within the UFM, the IMUFM1 and the IMUFM2, the α decay half-lives of heavy and superheavy nuclei with $ Z \geqslant 92 $are systematically calculated. The calculated standard deviation between the calculation results and the experimental data shows that the accuracy of the IMUFM1 is improved by 2.45% compared with that of the UFM. The accuracy of the IMUFM2 will be further improved by 32.09% compared with that of the IMUFM1, which implies that the nuclear deformation effect and the preformation factor are both important in prediction. Then, the α decay half-lives of Z = 118–120 isotopes are predicted from the IMUFM1 and the IMUFM2 by inputting the α decay energy values that are extracted from the sinite-range droplet model (FRDM), the Weizsäcker-Skyrme-4 (WS4) model and the Koura-Tachibaba-Uno-Yamads (KTUY) formula, respectively. The observed evolution of the α decay half-lives indicates that the evolution trends obtained from the above-mentioned three mass models are consistent with each other and the shell effects occur at N = 178 and 184, but their orders of magnitude, obtained from different mass models, are different from each other. Meanwhile, the comparison of half-lives between α decay and spontaneous fission shows that the dominant decay modes of the superheavy nuclei with N < 186 are α decay. Finally, the decay modes of 296Og, 297119 and 298120 α decay chains are predicted within the IMUFM1 and the IMUFM2 by using these three mass models, showing that the predictions from the WS4 mass model and KTUY mass model are more consistent with the experimental measurements. Form the FRDM2012 mass model, the predictions of 288Fl, 285Nh and 286Fl within the IMUFM1 mass model are not consistent with the experimental measurements, however, the prediction of 288Fl from the IMUFM2 is good agreement with the experimental measurement, which once again verifies the rationality and reliability of the IMUFM2. This study may be helpful for identifying new nuclide in future experiments.
      Corresponding author: WANG Nan, wangnan@szu.edu.cn ; WANG Yanzhao, yanzhaowang09@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.12175151) and the Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2021B0301030006).
    [1]

    Hofmann S, Munzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [2]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Katori K, Koura H, Kudo H, Ohnishi T, Ozawa A, Suda T, Sueki K, Tokanai F, Yamaguchi T, Yoneda A, Yoshida A 2004 J. Phys. Soc. Jpn. 73 2593Google Scholar

    [3]

    Morita K, Morimoto K, Kaji D, Haba H, Ozeki K, Kudou Y, Sumita T, Wakabayashi Y, Yoneda A, Tanaka K, Yamaki S, Sakai R, Akiyama T, Goto S, Hasebe H, Huang M, Huang T, Ideguchi E, Kasamatsu Y, Katori Y, Kariya Y, Kikunaga H, Koura H, Kudo H, Mashiko A, Mayama K, Mitsuoka S, Moriya T, Murakami M, Murayama H, Namai S, Ozawa A, Sato N, Sueki K, Takeyama M, Tokanai F, Yamaguchi T, Yoshida A 2012 Rev. Mod. Phys. 81 103201

    [4]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Yu S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502Google Scholar

    [5]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [6]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [7]

    Oganessian Y T, Utyonkov V K 2015 Nucl. Phys. A 944 62Google Scholar

    [8]

    Oganessian Y T, Sobiczewski A, Ter-akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [9]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603Google Scholar

    [10]

    Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Krupa L, Loktev T A, Smirnov S V, Zagrebaev V I, Äystö J, Trzaska W H, Rubchenya V A, Vardaci E, Stefanini A M, Cinausero M, Corradi L, Fioretto E, Mason P, Prete G F, Silvestri R, Beghini S, Montagnoli G, Scarlassara F, Hanappe F, Khlebnikov S V, Kliman J, Brondi A, Di Nitto A, Moro R, Gelli N, Szilner S 2010 Phys. Lett. B 686 227Google Scholar

    [11]

    Wang N, Zhao E G, Scheid W, Zhou S G 2012 Phys. Rev. C 85 041601Google Scholar

    [12]

    Li J X, Zhang H F 2022 Phys. Rev. C 106 034613Google Scholar

    [13]

    Li F, Zhu L, Wu Z H, Sun J, Guo C C 2018 Phys. Rev. C 98 014618Google Scholar

    [14]

    Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622Google Scholar

    [15]

    Varga K, Lovas R G, Liotta R J 1992 Phys. Rev. Lett. 69 37.

    [16]

    Wauters J, Bijnens N, Denooven P, Huyse M, Hwang H Y, Reusen G, von Schwarzenberg J, Van Duppen P, Kirchner R, Roeckl E 1994 Phys. Rev. Lett. 72 1329Google Scholar

    [17]

    Andeyev A N, Huyse M, Van Duppen P, et al. 2000 Nature 405 430Google Scholar

    [18]

    Khuyagbaatar J, Yakushev A, Dullmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schädel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward D E, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2014 Phys. Rev. Lett. 112 172501Google Scholar

    [19]

    Oganessian Y T, Utyonkov V K, Shumeiko M V, Abdullin F S, Adamian G G, Dmitriev S N, Ibadullayev D, Itkis M G, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Rogov I S, Sagaidak R N, Schlattauer L, Shubin V D, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Bublikova N S, Voronyuk M G, Sabelnikov A V, Bodrov A Y, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B 2024 Phys. Rev. C 109 054307

    [20]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [21]

    Gurney R W, Condon E U 1928 Nature 122 439Google Scholar

    [22]

    Malik S S, Gupts R K 1989 Phys. Rev. C 39 1992.Google Scholar

    [23]

    Buck B, Merchant A C, Perez S M 1993 At. Data Nucl. Data Tables 54 53Google Scholar

    [24]

    Mirea M 1996 Phys. Rev. C 54 302Google Scholar

    [25]

    任中洲, 许昌 2006 原子核物理评论 23 369

    Ren Z Z, Xu C 2006 Nucl. Phys. Rev. 23 369

    [26]

    Royer G 2000 J. Phys. G. Nucl. Part. Phys. 26 1149Google Scholar

    [27]

    Zhang H F, Royer G, Wang Y J, Dong J M, Zuo W, Li J Q 2009 Phys. Rev. C 80 057301Google Scholar

    [28]

    张海飞, 包小军, 王佳眉, 黄银, 李君清, 张鸿飞 2013 原子核物理评论 30 241Google Scholar

    Zhang H F, Bao X J, Wang J M, Huang Y, Li J Q, Zhang H F 2013 Nucl. Phys. Rev. 30 241Google Scholar

    [29]

    Zou Y T, Pan X, Liu H M, Wu X J, He B, Li X H 2021 Phys. Scr. 96 075301Google Scholar

    [30]

    张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛 2024 73 062101Google Scholar

    Zhang K L, Han S X, Yue S J, Liu Z Y, Hu B T 2024 Acta. Phys. Sin. 73 062101Google Scholar

    [31]

    王艳召, 崔建坡, 刘军, 苏学斗 2017 原子能科学技术 51 1544Google Scholar

    Wang Y Z, Cui J P, Liu J, Su X D 2017 At. Energy Sci. Tech. 51 1544Google Scholar

    [32]

    Sobiczewski A, Patyk Z, Cwiok S 1989 Phys. Lett. B 224 279

    [33]

    Luo S, Qi L J, Zhang D M, He B, Chu P C, Li X H 2023 Eur. Phys. J A 59 125Google Scholar

    [34]

    Poenaru D N, Nagame Y, Gherghescu R A, Greiner W 2002 Phys. Rev. C 66 049902Google Scholar

    [35]

    Poenaru D N, Gherghescu R A, Carjan N 2007 Eur. Lett. 77 62001Google Scholar

    [36]

    Shin E, Lim Y, Hyun C H, Oh Y 2016 Phys. Rev. C 94 024320Google Scholar

    [37]

    Qian Y B, Ren Z Z 2012 Phys. Rev. C 85 027306Google Scholar

    [38]

    Sahu B, Paira R, Rath B 2013 Nucl. Phys. A 908 40Google Scholar

    [39]

    Akrawy D T, Ahmed A H 2019 Phys. Rev. C 100 044618Google Scholar

    [40]

    Xing F Z, Qi H, Cui J P, Gao Y H, Wang Y Z, Gu J Z, Yong G C 2022 Nucl. Phys. A 1028 122528Google Scholar

    [41]

    Balasubramaniam M, Gupta Raj K 1999 Phys. Rev. C 60 064316Google Scholar

    [42]

    Santhosh K P, Biju R K 2009 J. Phys. G. Nucl. Part. Phys. 36 015107Google Scholar

    [43]

    Balasubramaniam M, Arunachaiam N 2005 Phys. Rev. C 71 014603Google Scholar

    [44]

    Dong J M, Zhang H F, Zuo W, Li J Q 2010 Chin. Phys. C 34 182Google Scholar

    [45]

    Dong J M, Zhang H F, Li J Q, Scheid W 2009 Eur. Phys. J. A 41 197Google Scholar

    [46]

    Zhu T B, Hu B T, Zhang H F, Dong J M, Li Q J 2011 Commun. Theor. Phys. 55 307Google Scholar

    [47]

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2021 Chin. Phys. C 45 124105Google Scholar

    [48]

    Santhosh K P 2022 Phys. Rev. C 106 054604Google Scholar

    [49]

    Zhu D X, Liu H M, Xu Y Y, Zou Y T, Wu X J, Chu P C, Li X H 2022 Chin. Phys. C 46 044106Google Scholar

    [50]

    Zhu D X, Li M, Xu Y Y, Wu X J, He B, Li X H 2022 Phys. Scr. 97 095304Google Scholar

    [51]

    Zhang H F, Royer G 2008 Phys. Rev. C 77 054318Google Scholar

    [52]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2020 Phys. Rev. C 101 014301Google Scholar

    [53]

    Zhang S, Zhang Y L, Cui J P, Wang Y Z 2017 Phys. Rev. C 95 014311Google Scholar

    [54]

    Santhosh K P, Jose T A 2021 Phys. Rev. C 104 064604Google Scholar

    [55]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta. Phys. Sin. 71 062301Google Scholar

    [56]

    Wang Y Z, Xing F Z, Cui J P, Gao Y H, Gu J Z 2023 Chin. Phys. C 47 084101Google Scholar

    [57]

    Qi L J, Zhang D M, Luo S, Zhang G Q, Chu P C, Wu X J, Li X H 2023 Phys. Rev. C 108 014325Google Scholar

    [58]

    Chandran Megha, Santhosh K P 2023 Phys. Rev. C 107 024614Google Scholar

    [59]

    Wang Y Z, Xing F Z, Zhang W H, Cui J Z, Gu J P 2024 Phys. Rev. C 110 064305Google Scholar

    [60]

    Nakada H, Sugiura K 2014 Prog. Theor. Exp. Phys. 2014 033D02

    [61]

    Thakur S, Kumar S, Kumar R 2013 Braz. J. Phys. 43 152Google Scholar

    [62]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [63]

    Brewer N T, Utyonkov V K, Rykaczewski K P, Oganessian Y T, Abdullin F S, Boll R A, Dean D J, Dmitriev S N, Ezold J G, Felker L K, Grzywacz R K, Itkis M G, Kovrizhnykh N D, McInturff D C, Miernik K, Owen G D, Polyakov A N, Popeko A G, Roberto J B, Sabel'nikov A V, Sagaidak R N, Shirokovsky I V, Shumeiko M V, Sims N J, Smith E H, Subbotin V G, Sukhov A M, Svirikhin A I, Tsyganov Y S, Van Cleve S M, Voinov A A, Vostokin G K, White C S, Hamilton J H, Stoyer M A 2018 Phys. Rev. C 98 024317Google Scholar

    [64]

    Bao X J 2019 Phys. Rev. C 100 011601(R

    [65]

    Sobiczewski A 2016 Phys. Rev. C 94 051302(R

    [66]

    Mohr P 2017 Phys. Rev. C 95 011302(R

    [67]

    Santhosh K P, Jost T A, Deepak N K 2021 Phys. Rev. C 103 064612Google Scholar

    [68]

    Nithya C, Santhosh K P 2023 Phys. Rev. C 108 014606Google Scholar

    [69]

    Blocki J, Randruo J, Swiatecki W J, Tsang C F 1977 Ann. Phys. 105 427Google Scholar

    [70]

    Bass R 1973 Phys. Lett. B 47 139Google Scholar

    [71]

    Bass R 1974 Nucl. Phys. A 231 45Google Scholar

    [72]

    Bass R 1977 Phys. Rev. Lett. 39 265

    [73]

    Reisdorf W 1994 J. Phys. G: Nucl. Part. Phys. 20 1297Google Scholar

    [74]

    Winther A 1995 Nucl. Phys. A 594 203Google Scholar

    [75]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [76]

    Wang M, Huang J W, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [77]

    Kondev F G, Wang M, Huang J W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [78]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [79]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109–110 1Google Scholar

    [80]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [81]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [82]

    Kirson M W 2008 Nuclear Phys. A 798 29Google Scholar

    [83]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [84]

    Goriely S 2015 Nucl. Phys. A 933 68Google Scholar

    [85]

    Zhang K Y, Cheoun M K, Choi Y B, Pooi S C, Dong J M, Dong Z H, Du X K, Geng L S, Ha E, He X T, Heo C, Ho M C, In E J, Kim S, Kim Y, Lee C H, Lee J, Li H X, Li Z P, Luo T P, Meng J, Mun M H, Niu Z M, Pan C, Papakonstantinou P, Shang X L, Shen C W, Shen G F, Sun W, Sun X X, Tam C K, Wang C, Wang X Z, Wong S H, Wu J W, Wu X H, Xia X W, Yan Y J, Yeung R W Y, Yiu T C, Zhang S Q, Zhang W, Zhang X Y, Zhao Q, Zhou S G 2022 At. Data Nucl. Data Tables 144 101488Google Scholar

    [86]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301Google Scholar

    [87]

    Swiatecki W J 1955 Phys. Rev. J. 100 937Google Scholar

    [88]

    Xu C, Ren Z Z 2005 Phys. Rev. C 71 014309Google Scholar

    [89]

    Ren Z Z, Xu C 2005 Nucl. Phys. A 759 64Google Scholar

    [90]

    Bao X J, Guo S Q, Zhang H F 2015 J. Phys. G. Nucl. Part. Phys. 42 085101Google Scholar

  • 图 1  $ {\log _{10}}r $值随中子数N的演化

    Figure 1.  The values of log10r as functions of the neutron number N.

    图 2  294Og发生α衰变时的核-核相互作用势

    Figure 2.  The nuclear-nuclear interaction potential in α decay of 294Og.

    图 3  α衰变和自发裂变的对数半衰期随中子数N的演化

    Figure 3.  The logarithm half-lives of α decay and spontaneous fission as functions of the neutron number N.

    表 1  (10)式的拟合系数

    Table 1.  The fitting parameters of Eq. (10).

    偶-偶 其他
    系数 126 < N < 152 N > 152 126 < N < 152 N > 152
    a –0.3583 0 5.2940 0
    b 0.0298 –0.0099 0.0388 –0.0606
    c 0.0022 0.0382 8.7843×10–4 0.0214
    d 0.0017 0.0102 –0.0241 0.0042
    DownLoad: CSV

    表 2  $ Z \geqslant 92 $重核和超重核α衰变半衰期的理论值与实验值之间的平均偏差$ \overline \sigma $和标准偏差$ \sqrt {\overline {{\sigma ^2}} } $

    Table 2.  The average deviation $ \overline \sigma $and the standard deviation $ \sqrt {\overline {{\sigma ^2}} } $ between the calculated ones and the experimental data of the heavy and superheavy nuclei with $ Z \geqslant 92 $.

    模型$ \overline \sigma $$ \sqrt {\overline {{\sigma ^2}} } $
    总值(n = 178)偶-偶(n = 56)其他(n = 122)总值(n = 178)偶-偶(n = 56)其他(n = 122)
    UFM0.57600.66170.53670.70660.72920.6960
    IMUFM10.56190.68220.50670.68550.74340.6572
    IMUFM20.38160.22320.45440.53200.33900.6002
    DownLoad: CSV

    表 3  $ Z \geqslant 110 $超重核α衰变半衰期的实验值与理论值, 其中Qα值取自于文献[76], 实验半衰期和原子核的自旋宇称取自文献[77]

    Table 3.  The experimental and calculated α decay half-lives of superheavy nuclei with $ Z \geqslant 110 $. Here the Qα values taken from Ref. [76], and the experimental α decay half-lives and the nuclear spin parity taken from Ref. [77], respectively.

    母核 子核 Qα/MeV $ J_i^{\text{π}} $ $ J_j^{\text{π}} $ l $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Expt}}{.}}{\text{/s}} $ $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $
    UFM IMUFM1 IMUFM2
    267Ds 263Hs 11.78 3/2+# 3/2+# 0 –5.00 –4.956 –4.764 –4.295
    269Ds 265Hs 11.51 3/2+# 0 –3.638 –4.384 –4.194 –3.777
    270Ds 266Hs 11.117 0+ 0+ 0 –3.688 –3.479 –3.340 –3.602
    273Ds 269Hs 11.37 9/2+# 0 –3.620 –4.105 –3.934 –3.620
    272Rg 268Mt 11.197 0 –2.377 –3.377 –3.205 –2.783
    278Rg 274Mt 10.85 0 –2.097 –2.596 –2.403 –2.134
    279Rg 275Mt 10.53 0 –0.77 –1.794 –1.616 –1.373
    280Rg 276Mt 10.149 0 0.633 –0.786 –0.623 –0.405
    277Cn 273Ds 11.62 0 –3.102 –4.095 –3.910 –3.534
    281Cn 277Ds 10.43 0 –0.745 –1.212 –1.121 –0.847
    282Nh 278Rg 10.78 0 –0.854 –1.800 –1.753 –1.422
    284Nh 280Rg 10.28 0 –0.013 –0.492 –0.422 –0.142
    285Nh 281Rg 10.01 0 0.663 0.258 0.328 0.581
    286Nh 282Rg 9.79 0 1.079 0.891 0.911 1.139
    285Fl 281Cn 10.56 0 –0.678 –0.932 –0.883 –0.547
    286Fl 282Cn 10.36 0+ 0+ 0 –0.657 –0.390 –0.351 –0.836
    287Fl 283Cn 10.17 0+ 0 –0.292 0.130 0.168 0.453
    288Fl 284Cn 10.076 0+ 0+ 0 –0.185 0.386 0.272 –0.309
    289Fl 285Cn 9.95 0 0.322 0.731 0.627 0.860
    287Mc 283Nh 10.76 0 –1.222 –1.140 –1.107 –0.741
    288Mc 284Nh 10.65 0 –0.752 –0.861 –0.828 –0.487
    289Mc 285Nh 10.49 0 –0.387 –0.442 –0.408 –0.093
    290Mc 286Nh 10.41 0 –0.076 –0.232 –0.200 0.090
    290Lv 286Fl 11 0+ 0+ 0 –2.046 –1.458 –1.444 –1.846
    291Lv 287Fl 10.89 0 –1.585 –1.186 –1.172 –0.826
    292Lv 288Fl 10.791 0+ 0+ 0 –1.796 –0.940 –1.052 –1.551
    293Lv 289Fl 10.68 0 –1.155 –0.667 –0.737 –0.442
    293Ts 289Mc 11.32 0 –1.602 –1.973 –2.238 –1.861
    294Ts 290Mc 11.18 0 –1.155 –1.636 –1.881 –1.530
    294Og 290Lv 11.87 0+ 0+ 0 –3.155 –2.985 –3.110 –3.430
    DownLoad: CSV

    表 4  利用IMUFM2预言的Z = 118—120同位素链α衰变半衰期, Qα值分别取自FRDM2012[79], WS4[80]和KTUY[81]质量模型

    Table 4.  The predicted α decay half-lives of superheavy nuclei with Z = 118–120 isotopes within the IMUFM2 by inputting the Qα values that extracted from FRDM2012[79], WS4[80], and KTUY[81] mass tables, respectively.

    母核 FRDM2012 WS4 KTUY
    Qα/MeV $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ Qα/MeV $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ Qα/MeV $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $
    282Og 13.115 –5.234 13.494 –5.960 12.935 –4.877
    284Og 13.565 –6.311 13.227 –5.673 12.745 –4.711
    286Og 13.045 –5.346 12.915 –5.087 12.335 –3.873
    288Og 12.855 –5.081 12.616 –4.591 11.905 –3.035
    290Og 12.665 –4.786 12.601 –4.653 11.645 –2.523
    292Og 12.385 –4.301 12.240 –3.987 11.465 –2.194
    294Og 12.365 –4.382 12.198 –4.017 11.165 –1.571
    296Og 12.275 –4.335 11.752 –3.151 10.945 –1.148
    298Og 12.485 –4.901 12.182 –4.243 11.115 –1.705
    300Og 12.505 –5.062 11.956 –3.852 11.035 –1.617
    302Og 12.615 –5.407 12.041 –4.168 10.945 –1.504
    304Og 13.395 –7.080 13.122 –6.557 12.435 –5.146
    285119 14.055 –6.359 13.612 –5.553 13.085 –4.451
    287119 13.365 –5.366 13.278 –5.195 12.705 –4.041
    289119 13.465 –5.311 13.157 –4.716 12.455 –3.268
    291119 13.235 –4.941 13.048 –4.573 12.165 –2.705
    293119 12.915 –4.362 12.715 –3.949 11.985 –2.355
    295119 12.935 –4.477 12.758 –4.113 11.705 –1.774
    297119 12.895 –4.501 12.424 –3.512 11.285 –0.853
    299119 13.075 –4.929 12.764 –4.298 11.475 –1.389
    301119 13.075 –5.012 12.426 –3.664 11.345 –1.150
    303119 13.105 –5.141 12.416 –3.707 11.215 –0.887
    305119 13.855 –6.639 13.424 –5.828 12.815 –4.628
    288120 13.845 –6.523 13.725 –6.303 13.105 –5.110
    290120 13.745 –6.571 13.700 –6.488 12.835 –4.796
    292120 13.775 –6.215 13.467 –5.634 12.715 –4.125
    294120 13.485 –5.788 13.242 –5.315 12.495 –3.774
    296120 13.585 –6.103 13.343 –5.640 12.225 –3.306
    298120 13.235 –5.804 13.007 –5.345 11.625 –2.280
    300120 13.695 –6.572 13.319 –5.854 11.885 –2.784
    302120 13.545 –6.421 12.890 –5.125 11.795 –2.704
    304120 13.545 –6.529 12.763 –4.970 11.515 –2.135
    306120 14.275 –7.977 13.787 –7.108 13.225 –6.028
    DownLoad: CSV

    表 5  296Og, 297119和298120 α衰变链的衰变模式, 其中Qα值分别取自FRDM2012[79], WS4[80]和 KTUY[81]质量表

    Table 5.  Decay modes of 296Og, 297119 and 298120 α decay chains, here the Qα values taken from FRDM2012[79], WS4[80] , and KTUY[81] mass tables, respectively.

    母核 $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ FRDM2012 $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ WS4 $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ KTUY $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ 衰变模式
    SF Qα/MeV IMUFM1 IMUFM2 Qα/MeV IMUFM1 IMUFM2 Qα/MeV IMUFM1 IMUFM2 FRDM2012 WS4 KTUY Expt.
    296Og 5.39 12.275 –3.919 –4.335 11.752 –2.735 –3.151 10.945 –0.732 –1.148 α(α) α(α) α(α)
    292Lv 5.34 10.815 –1.115 –1.614 11.127 –1.911 –2.410 10.335 0.195 –0.304 α(α) α(α) α(α) α
    288Fl 3.02 9.165 3.100 2.519 9.645 1.561 0.980 9.465 2.123 1.542 SF(α) α(α) α(α) α
    284Cn –2.15 8.955 3.281 2.617 9.544 1.375 0.712 9.225 2.385 1.721 SF(SF) SF(SF) SF(SF) SF
    297119 8.53 12.895 –4.940 –4.501 12.424 –3.951 –3.512 11.285 –1.291 –0.853 α(α) α(α) α(α)
    293Ts 8.28 11.395 –2.396 –2.019 11.622 –2.963 –2.586 10.725 –0.708 –0.331 α(α) α(α) α(α) α
    289Mc 7.12 10.085 0.731 1.046 10.296 0.129 0.444 10.005 0.966 1.281 α(α) α(α) α(α) α
    285Nh 3.04 9.125 3.075 3.328 9.810 0.917 1.171 9.555 1.693 1.946 SF(SF) α(α) α(α) α
    281Rg –1.89 9.215 2.128 2.320 9.758 0.455 0.647 9.785 0.374 0.566 SF(SF) SF(SF) SF(SF) SF
    298120 4.68 13.235 –5.567 –5.804 13.007 –5.108 –5.345 11.625 –2.043 –2.280 α(α) α(α) α(α)
    294Og 4.67 12.365 –4.062 –4.382 12.198 –3.698 –4.017 11.165 –1.252 –1.571 α(α) α(α) α(α) α
    290Lv 3.71 11.065 –1.610 –2.011 11.084 –1.657 –2.059 10.575 –0.323 –0.725 α(α) α(α) α(α) α
    286Fl 1.54 9.465 2.30 1.815 9.970 0.756 0.272 9.725 1.489 1.004 SF(SF) α(α) α(α) α
    282Cn –3.78 9.425 1.788 1.221 10.140 –0.331 –0.898 10.135 –0.317 –0.884 SF(SF) SF(SF) SF(SF) SF
    DownLoad: CSV
    Baidu
  • [1]

    Hofmann S, Munzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [2]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Katori K, Koura H, Kudo H, Ohnishi T, Ozawa A, Suda T, Sueki K, Tokanai F, Yamaguchi T, Yoneda A, Yoshida A 2004 J. Phys. Soc. Jpn. 73 2593Google Scholar

    [3]

    Morita K, Morimoto K, Kaji D, Haba H, Ozeki K, Kudou Y, Sumita T, Wakabayashi Y, Yoneda A, Tanaka K, Yamaki S, Sakai R, Akiyama T, Goto S, Hasebe H, Huang M, Huang T, Ideguchi E, Kasamatsu Y, Katori Y, Kariya Y, Kikunaga H, Koura H, Kudo H, Mashiko A, Mayama K, Mitsuoka S, Moriya T, Murakami M, Murayama H, Namai S, Ozawa A, Sato N, Sueki K, Takeyama M, Tokanai F, Yamaguchi T, Yoshida A 2012 Rev. Mod. Phys. 81 103201

    [4]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Yu S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502Google Scholar

    [5]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [6]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [7]

    Oganessian Y T, Utyonkov V K 2015 Nucl. Phys. A 944 62Google Scholar

    [8]

    Oganessian Y T, Sobiczewski A, Ter-akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [9]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603Google Scholar

    [10]

    Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Krupa L, Loktev T A, Smirnov S V, Zagrebaev V I, Äystö J, Trzaska W H, Rubchenya V A, Vardaci E, Stefanini A M, Cinausero M, Corradi L, Fioretto E, Mason P, Prete G F, Silvestri R, Beghini S, Montagnoli G, Scarlassara F, Hanappe F, Khlebnikov S V, Kliman J, Brondi A, Di Nitto A, Moro R, Gelli N, Szilner S 2010 Phys. Lett. B 686 227Google Scholar

    [11]

    Wang N, Zhao E G, Scheid W, Zhou S G 2012 Phys. Rev. C 85 041601Google Scholar

    [12]

    Li J X, Zhang H F 2022 Phys. Rev. C 106 034613Google Scholar

    [13]

    Li F, Zhu L, Wu Z H, Sun J, Guo C C 2018 Phys. Rev. C 98 014618Google Scholar

    [14]

    Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622Google Scholar

    [15]

    Varga K, Lovas R G, Liotta R J 1992 Phys. Rev. Lett. 69 37.

    [16]

    Wauters J, Bijnens N, Denooven P, Huyse M, Hwang H Y, Reusen G, von Schwarzenberg J, Van Duppen P, Kirchner R, Roeckl E 1994 Phys. Rev. Lett. 72 1329Google Scholar

    [17]

    Andeyev A N, Huyse M, Van Duppen P, et al. 2000 Nature 405 430Google Scholar

    [18]

    Khuyagbaatar J, Yakushev A, Dullmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schädel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward D E, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2014 Phys. Rev. Lett. 112 172501Google Scholar

    [19]

    Oganessian Y T, Utyonkov V K, Shumeiko M V, Abdullin F S, Adamian G G, Dmitriev S N, Ibadullayev D, Itkis M G, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Rogov I S, Sagaidak R N, Schlattauer L, Shubin V D, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Bublikova N S, Voronyuk M G, Sabelnikov A V, Bodrov A Y, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B 2024 Phys. Rev. C 109 054307

    [20]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [21]

    Gurney R W, Condon E U 1928 Nature 122 439Google Scholar

    [22]

    Malik S S, Gupts R K 1989 Phys. Rev. C 39 1992.Google Scholar

    [23]

    Buck B, Merchant A C, Perez S M 1993 At. Data Nucl. Data Tables 54 53Google Scholar

    [24]

    Mirea M 1996 Phys. Rev. C 54 302Google Scholar

    [25]

    任中洲, 许昌 2006 原子核物理评论 23 369

    Ren Z Z, Xu C 2006 Nucl. Phys. Rev. 23 369

    [26]

    Royer G 2000 J. Phys. G. Nucl. Part. Phys. 26 1149Google Scholar

    [27]

    Zhang H F, Royer G, Wang Y J, Dong J M, Zuo W, Li J Q 2009 Phys. Rev. C 80 057301Google Scholar

    [28]

    张海飞, 包小军, 王佳眉, 黄银, 李君清, 张鸿飞 2013 原子核物理评论 30 241Google Scholar

    Zhang H F, Bao X J, Wang J M, Huang Y, Li J Q, Zhang H F 2013 Nucl. Phys. Rev. 30 241Google Scholar

    [29]

    Zou Y T, Pan X, Liu H M, Wu X J, He B, Li X H 2021 Phys. Scr. 96 075301Google Scholar

    [30]

    张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛 2024 73 062101Google Scholar

    Zhang K L, Han S X, Yue S J, Liu Z Y, Hu B T 2024 Acta. Phys. Sin. 73 062101Google Scholar

    [31]

    王艳召, 崔建坡, 刘军, 苏学斗 2017 原子能科学技术 51 1544Google Scholar

    Wang Y Z, Cui J P, Liu J, Su X D 2017 At. Energy Sci. Tech. 51 1544Google Scholar

    [32]

    Sobiczewski A, Patyk Z, Cwiok S 1989 Phys. Lett. B 224 279

    [33]

    Luo S, Qi L J, Zhang D M, He B, Chu P C, Li X H 2023 Eur. Phys. J A 59 125Google Scholar

    [34]

    Poenaru D N, Nagame Y, Gherghescu R A, Greiner W 2002 Phys. Rev. C 66 049902Google Scholar

    [35]

    Poenaru D N, Gherghescu R A, Carjan N 2007 Eur. Lett. 77 62001Google Scholar

    [36]

    Shin E, Lim Y, Hyun C H, Oh Y 2016 Phys. Rev. C 94 024320Google Scholar

    [37]

    Qian Y B, Ren Z Z 2012 Phys. Rev. C 85 027306Google Scholar

    [38]

    Sahu B, Paira R, Rath B 2013 Nucl. Phys. A 908 40Google Scholar

    [39]

    Akrawy D T, Ahmed A H 2019 Phys. Rev. C 100 044618Google Scholar

    [40]

    Xing F Z, Qi H, Cui J P, Gao Y H, Wang Y Z, Gu J Z, Yong G C 2022 Nucl. Phys. A 1028 122528Google Scholar

    [41]

    Balasubramaniam M, Gupta Raj K 1999 Phys. Rev. C 60 064316Google Scholar

    [42]

    Santhosh K P, Biju R K 2009 J. Phys. G. Nucl. Part. Phys. 36 015107Google Scholar

    [43]

    Balasubramaniam M, Arunachaiam N 2005 Phys. Rev. C 71 014603Google Scholar

    [44]

    Dong J M, Zhang H F, Zuo W, Li J Q 2010 Chin. Phys. C 34 182Google Scholar

    [45]

    Dong J M, Zhang H F, Li J Q, Scheid W 2009 Eur. Phys. J. A 41 197Google Scholar

    [46]

    Zhu T B, Hu B T, Zhang H F, Dong J M, Li Q J 2011 Commun. Theor. Phys. 55 307Google Scholar

    [47]

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2021 Chin. Phys. C 45 124105Google Scholar

    [48]

    Santhosh K P 2022 Phys. Rev. C 106 054604Google Scholar

    [49]

    Zhu D X, Liu H M, Xu Y Y, Zou Y T, Wu X J, Chu P C, Li X H 2022 Chin. Phys. C 46 044106Google Scholar

    [50]

    Zhu D X, Li M, Xu Y Y, Wu X J, He B, Li X H 2022 Phys. Scr. 97 095304Google Scholar

    [51]

    Zhang H F, Royer G 2008 Phys. Rev. C 77 054318Google Scholar

    [52]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2020 Phys. Rev. C 101 014301Google Scholar

    [53]

    Zhang S, Zhang Y L, Cui J P, Wang Y Z 2017 Phys. Rev. C 95 014311Google Scholar

    [54]

    Santhosh K P, Jose T A 2021 Phys. Rev. C 104 064604Google Scholar

    [55]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta. Phys. Sin. 71 062301Google Scholar

    [56]

    Wang Y Z, Xing F Z, Cui J P, Gao Y H, Gu J Z 2023 Chin. Phys. C 47 084101Google Scholar

    [57]

    Qi L J, Zhang D M, Luo S, Zhang G Q, Chu P C, Wu X J, Li X H 2023 Phys. Rev. C 108 014325Google Scholar

    [58]

    Chandran Megha, Santhosh K P 2023 Phys. Rev. C 107 024614Google Scholar

    [59]

    Wang Y Z, Xing F Z, Zhang W H, Cui J Z, Gu J P 2024 Phys. Rev. C 110 064305Google Scholar

    [60]

    Nakada H, Sugiura K 2014 Prog. Theor. Exp. Phys. 2014 033D02

    [61]

    Thakur S, Kumar S, Kumar R 2013 Braz. J. Phys. 43 152Google Scholar

    [62]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [63]

    Brewer N T, Utyonkov V K, Rykaczewski K P, Oganessian Y T, Abdullin F S, Boll R A, Dean D J, Dmitriev S N, Ezold J G, Felker L K, Grzywacz R K, Itkis M G, Kovrizhnykh N D, McInturff D C, Miernik K, Owen G D, Polyakov A N, Popeko A G, Roberto J B, Sabel'nikov A V, Sagaidak R N, Shirokovsky I V, Shumeiko M V, Sims N J, Smith E H, Subbotin V G, Sukhov A M, Svirikhin A I, Tsyganov Y S, Van Cleve S M, Voinov A A, Vostokin G K, White C S, Hamilton J H, Stoyer M A 2018 Phys. Rev. C 98 024317Google Scholar

    [64]

    Bao X J 2019 Phys. Rev. C 100 011601(R

    [65]

    Sobiczewski A 2016 Phys. Rev. C 94 051302(R

    [66]

    Mohr P 2017 Phys. Rev. C 95 011302(R

    [67]

    Santhosh K P, Jost T A, Deepak N K 2021 Phys. Rev. C 103 064612Google Scholar

    [68]

    Nithya C, Santhosh K P 2023 Phys. Rev. C 108 014606Google Scholar

    [69]

    Blocki J, Randruo J, Swiatecki W J, Tsang C F 1977 Ann. Phys. 105 427Google Scholar

    [70]

    Bass R 1973 Phys. Lett. B 47 139Google Scholar

    [71]

    Bass R 1974 Nucl. Phys. A 231 45Google Scholar

    [72]

    Bass R 1977 Phys. Rev. Lett. 39 265

    [73]

    Reisdorf W 1994 J. Phys. G: Nucl. Part. Phys. 20 1297Google Scholar

    [74]

    Winther A 1995 Nucl. Phys. A 594 203Google Scholar

    [75]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [76]

    Wang M, Huang J W, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [77]

    Kondev F G, Wang M, Huang J W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [78]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [79]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109–110 1Google Scholar

    [80]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [81]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [82]

    Kirson M W 2008 Nuclear Phys. A 798 29Google Scholar

    [83]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [84]

    Goriely S 2015 Nucl. Phys. A 933 68Google Scholar

    [85]

    Zhang K Y, Cheoun M K, Choi Y B, Pooi S C, Dong J M, Dong Z H, Du X K, Geng L S, Ha E, He X T, Heo C, Ho M C, In E J, Kim S, Kim Y, Lee C H, Lee J, Li H X, Li Z P, Luo T P, Meng J, Mun M H, Niu Z M, Pan C, Papakonstantinou P, Shang X L, Shen C W, Shen G F, Sun W, Sun X X, Tam C K, Wang C, Wang X Z, Wong S H, Wu J W, Wu X H, Xia X W, Yan Y J, Yeung R W Y, Yiu T C, Zhang S Q, Zhang W, Zhang X Y, Zhao Q, Zhou S G 2022 At. Data Nucl. Data Tables 144 101488Google Scholar

    [86]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301Google Scholar

    [87]

    Swiatecki W J 1955 Phys. Rev. J. 100 937Google Scholar

    [88]

    Xu C, Ren Z Z 2005 Phys. Rev. C 71 014309Google Scholar

    [89]

    Ren Z Z, Xu C 2005 Nucl. Phys. A 759 64Google Scholar

    [90]

    Bao X J, Guo S Q, Zhang H F 2015 J. Phys. G. Nucl. Part. Phys. 42 085101Google Scholar

  • [1] Xia Jin-Ge, Li Wei-Feng, Fang Ji-Yu, Niu Zhong-Ming. An empirical formula of nuclear β-decay half-lives. Acta Physica Sinica, 2024, 73(6): 062301. doi: 10.7498/aps.73.20231653
    [2] Liu Chao, Liu Shi-Long, Yang Yi, Feng Jing, Li Yu-Zhao. K X-ray emission and kinetic energy-nuclear charge relationship of 252Cf spontaneous fission. Acta Physica Sinica, 2024, 73(14): 142501. doi: 10.7498/aps.73.20240563
    [3] Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao. Influence of strong laser field on nuclear α decay. Acta Physica Sinica, 2024, 73(6): 062101. doi: 10.7498/aps.73.20231627
    [4] He Tie1\2\3, Xiao Jun2\3, An Li2\3, Yang Jian2\3, Zheng Pu2\3A novel method to measure prompt fission neutron spectrum based on fission γ tagging technique. Acta Physica Sinica, 2018, 67(21): 212501. doi: 10.7498/aps.67.20180563
    [5] Li Yong-Ming,  Wang Liang,  Chen Xiang-Lin,  Ruan Nian-Shou,  Zhao De-Shan. Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission. Acta Physica Sinica, 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [6] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [7] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [8] Jia Fei, Xu Hu-Shan, Zheng Chuan, Fan Rui-Rui, Zhang Xue-Ying, Li Jun-Qing, Scheid W.. Study of the mechanism for synthesizing superheavy nuclei based on dinuclear system. Acta Physica Sinica, 2007, 56(4): 2047-2052. doi: 10.7498/aps.56.2047
    [9] Jia Fei, Xu Hu-Shan, Huang Tian-Heng, Yuan Xiao-Hua, Zhang Hong-Bin, Li Jun-Qing, W.Scheid. Study of mass distributions of quasifission products based on dinuclear system. Acta Physica Sinica, 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [10] QING CHENG-RUI, HE ZUO-XIU. A DISCUSSION OF THE ATOMIC EFFECT IN THE β-DECAY OF 3H AND THE NEUTRINO MASS. Acta Physica Sinica, 1982, 31(5): 654-659. doi: 10.7498/aps.31.654
    [11] . Acta Physica Sinica, 1975, 24(2): 105-114. doi: 10.7498/aps.24.105
    [12] WANG YU-SHENG, XU JING-CHENG. PROBABILITY OF PROMPT NEUTRON EMISSION FROM SPONTANEOUS FISSION OF Pu240. Acta Physica Sinica, 1974, 23(1): 38-45. doi: 10.7498/aps.23.38
    [13] HUANG SHENG-NIAN, CHEN JIN-GUI, HAN HONG-YIN. MULTIPLICITY OF PROMPT NEUTRONS FROM SPONTANEOUS FISSION OF URANIUM-238. Acta Physica Sinica, 1974, 23(1): 46-51. doi: 10.7498/aps.23.46
    [14] . Acta Physica Sinica, 1966, 22(1): 111-114. doi: 10.7498/aps.22.111
    [15] ZHUO YI-ZHONG, LI ZE-QING, LI MING-SHOU. THE PAIRING EFFECTS OF NUCLEI ON THE ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS. Acta Physica Sinica, 1966, 22(2): 136-145. doi: 10.7498/aps.22.136
    [16] О ДАЛЬНЕЙШЕМ ИССЛЕДОВАНИИ СПЕКТРОВ НЕЙТРОНОВ ДЕЛЕНИЯ. Acta Physica Sinica, 1965, 21(3): 546-559. doi: 10.7498/aps.21.546
    [17] ZHU YEI-ZHUNG, LEE TSE-CHING. ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS AND THE STRUCTURE AT THE SADDLE POINT. Acta Physica Sinica, 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
    [18] . Acta Physica Sinica, 1964, 20(9): 938-939. doi: 10.7498/aps.20.938
    [19] CHANG LI-NING, AN IN, CHEN TING-GIN, DAI YUAN-BENG. FOUR BODY DECAY OF Σ IN A COMPOSITE MODEL. Acta Physica Sinica, 1962, 18(5): 264-271. doi: 10.7498/aps.18.264
    [20] РАСПАД Yb169——ИССЛЕДОВАНИЕ ВОЗБУЖДЕННЫХ УРОВНЕЙ СИЛЬНО ДЕФОРМИРОВАННЫХ ЯДЕР РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ (Ⅰ). Acta Physica Sinica, 1961, 17(9): 395-410. doi: 10.7498/aps.17.395
Metrics
  • Abstract views:  299
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2024
  • Accepted Date:  27 March 2025
  • Available Online:  24 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map