-
基于频域和时域的光谱学分析,系统地研究了Tm3+掺杂的NaYF4纳米棒的荧光选择输出特性及荧光输出与激光脉冲宽度、激发波长、抽运功率及环境温度的依赖关系.结果表明:与其他因素相比,输出光色强烈地依赖于激光脉宽.通过合适的脉宽激光激发,在NaYF4:0.5 mol% Tm3+纳米棒中获得了强烈的单带近红外荧光发射,该波段荧光在深层组织成像方面具有极大应用优势.基于多声子无辐射弛豫理论和荧光动力学过程,揭示了脉冲宽度调控的单带近红外荧光的输出机理,其机理为多声子弛豫辅助的下转换荧光和激光脉宽调制的上转换荧光之间的竞争,该研究为光谱调控提供了新的理论依据和途径.
-
关键词:
- NaYF4:Tm3+纳米棒 /
- 脉冲宽度 /
- 选择激发 /
- 光谱调控
The variations in material composition, phase and structure can provide a useful tool for tuning emission colour, but the controlling of the emission colour in a material, with a composition fixed, remains to be a daunting challenge. In this work, we systematically study the luminescence selective output characteristics of Tm3+ doped NaYF4 nanorods, and also the dependences of fluerecence output on pulse duration, excitation wavelength, pump power, and ambient temperature. The results show that the color of output light is strongly dependent on laser pulse duration compared with other factors. The temperature dependent luminescence of the nanorods shows very different behaviors with short-pulse laser excitation from those of continuous wave (CW) laser. When the pulse laser at 656 nm is employed, the emission spectra from NaYF4:0.5 mol% Tm3+ nanorods at the different temperatures are dominated by near-infrared (NIR) luminescence about 800 nm accompanied with weak blue luminescence, giving rise to nearly spectrally-pure NIR emissions at 20 K. When the pulse laser is replaced by CW laser, blue double emissions at 453 and 478 nm with the same order of magnitude of NIR luminescence can be clearly detected at room temperature. The key mechanism responsible for colour-tunable emission can be explained in terms of the population process of luminescence level, in which the different luminescence level populations need different time intervals. Considering excited-state absorption (ESA) for a particular 1D2 energy level, there needs an extra step of 3F2, 33H4 multiphonon nonradiation relaxation process to populate the 3H4 state and subsequently pump its 1D2 state for blue emission. Therefore, the pulse width should be longer than nonradiation relaxation time of 3F2, 33H4 to comply with the ESA, while the nonradiation relaxation time can further be tuned by controlling ambient temperature. We show that the variation of the excitation power leads to interesting change in the upconversion (UC) decay curve. We focus our attention on the excitation wavelength dependences of 3H4 and 1D2 emission lifetimes in order to validate the population mechanism of luminescence level. We demonstrate that the 3H4 luminescence time depends on excitation wavelength, while 1D2 emission lifetime nearly keeps constant when varying the excitation wavelength. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is indicated that the UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface, while downconversion is mainly from the ions in the core for NaYF4:Tm3+ nanorods. The single-band NIR luminescence output by changing the pulse width and excitation wavelength provides an insight into the controlling of the population processes of luminescent levels and offers a versatile approach to tuning the spectral output.-
Keywords:
- NaYF4:Tm3+ nanorods /
- pulse width /
- selective excitation /
- spectral tuning
[1] Feng W, Zhu X J, Li F Y 2015 NPG Asia Mater. 5 e75
[2] Haase M, Schafer H 2011 Angew. Chem. Int. Ed. 50 5808
[3] Ding Y, Gu J, Zhang Y W, Sun L D, Yan C H 2012 Sci. Sin.:Technol. 42 1(in Chinese)[丁祎, 顾均, 张亚文, 孙聆东, 严纯华2012中国科学:技术科学42 1]
[4] Li C X, Lin J 2010 J. Mater. Chem. 20 6831
[5] Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244
[6] Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849
[7] Qian H S, Zhang Y 2008 Langumuir 24 12123
[8] Johnson N J, Korinek A, Dong C, van Veggel F C J M 2012 J. Am. Chem. Soc. 134 11068
[9] Nyk M, Kumar R, Ohulchanskyy T Y, Flask C A, Prasad P N 2012 Chem. Eur. J. 18 5558
[10] Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano Lett. 12 2852
[11] Zheng W, Tu D T, Liu Y S, Luo W Q, Ma E, Zhu H M, Chen X Y 2014 Sci. Sin.:Chim. 44 168(in Chinese)[郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元2014中国科学:化学44 168]
[12] Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343
[13] Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001
[14] Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474
[15] Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643
[16] Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M 2011 J. Lumin. 131 423
[17] Xu C L, Wang J G, Zhang X Y 2015 Acta Phys.-Chim. Sin. 31 2183(in Chinese)[徐春龙, 王晋国, 张翔宇2015物理化学学报31 2183]
[18] Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301 (in Chinese)[孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖2015 64 243301]
[19] Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834
[20] Zhang X Y, Wang M Q, Ding J J, Gao D L, Shi Y H, Song X H 2012 Crystengcomm 14 8357
[21] Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成2015 64 138101]
[22] Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433
[23] Chatterjeea D K, Rufaihaha A J, Zhang Y 2008 Biomaterials 29 937
[24] Shen J, Chen G, Vu A M, Fan W, Bilsel O S, Chang C C, Han G 2013 Adv. Opt. Mater. 1 644
[25] Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano 7 7200
[26] Xie X J, Gao N Y, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608
[27] Zhong Y T, Tian G, Gu Z J, Yang Y J, Gu L, Zhao Y L, Ma Y, Yao J N 2014 Adv. Mater. 26 2831
[28] Li X M, Wang R, Zhang F, Zhou L, Shen D K, Yao C, Zhao D Y 2013 Sci. Rep. 3 3536
[29] Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732
[30] Tian D P, Gao D L, Chong B, Liu X Z 2015 Dalton Trans. 44 4133
[31] Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369
[32] Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505
[33] Gao D L, Tian D, Xiao G, Chong B, Yu G, Pang Q 2015 Opt. Lett. 40 3580
[34] Zhang X Y, Gao D L, Li L 2010 J. Appl. Phys. 107 123528
[35] Gao D L, Zheng H R, Tian Y, Cui M, Lei Y, He E J, Zhang X S 2010 J. Nanosci. Nanotechnol. 10 7694
[36] Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212
[37] Zheng H R, Gao D L, Zhang X Y, He E J, Zhang X S 2008 J. Appl. Phys. 104 3506
[38] Pollnau M, Gamelin D R, Lthi S R, Gdel H U, Hehlen M P 2000 Phys. Rev. B 61 3337
[39] Wang F, Liu X 2009 Chem. Soc. Rev. 38 976
[40] Pan Z, Morgan S H, Dyer K, Ueda A, Liu H 1996 J. Appl. Phys. 79 8906
-
[1] Feng W, Zhu X J, Li F Y 2015 NPG Asia Mater. 5 e75
[2] Haase M, Schafer H 2011 Angew. Chem. Int. Ed. 50 5808
[3] Ding Y, Gu J, Zhang Y W, Sun L D, Yan C H 2012 Sci. Sin.:Technol. 42 1(in Chinese)[丁祎, 顾均, 张亚文, 孙聆东, 严纯华2012中国科学:技术科学42 1]
[4] Li C X, Lin J 2010 J. Mater. Chem. 20 6831
[5] Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244
[6] Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849
[7] Qian H S, Zhang Y 2008 Langumuir 24 12123
[8] Johnson N J, Korinek A, Dong C, van Veggel F C J M 2012 J. Am. Chem. Soc. 134 11068
[9] Nyk M, Kumar R, Ohulchanskyy T Y, Flask C A, Prasad P N 2012 Chem. Eur. J. 18 5558
[10] Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano Lett. 12 2852
[11] Zheng W, Tu D T, Liu Y S, Luo W Q, Ma E, Zhu H M, Chen X Y 2014 Sci. Sin.:Chim. 44 168(in Chinese)[郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元2014中国科学:化学44 168]
[12] Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343
[13] Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001
[14] Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474
[15] Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643
[16] Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M 2011 J. Lumin. 131 423
[17] Xu C L, Wang J G, Zhang X Y 2015 Acta Phys.-Chim. Sin. 31 2183(in Chinese)[徐春龙, 王晋国, 张翔宇2015物理化学学报31 2183]
[18] Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301 (in Chinese)[孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖2015 64 243301]
[19] Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834
[20] Zhang X Y, Wang M Q, Ding J J, Gao D L, Shi Y H, Song X H 2012 Crystengcomm 14 8357
[21] Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成2015 64 138101]
[22] Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433
[23] Chatterjeea D K, Rufaihaha A J, Zhang Y 2008 Biomaterials 29 937
[24] Shen J, Chen G, Vu A M, Fan W, Bilsel O S, Chang C C, Han G 2013 Adv. Opt. Mater. 1 644
[25] Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano 7 7200
[26] Xie X J, Gao N Y, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608
[27] Zhong Y T, Tian G, Gu Z J, Yang Y J, Gu L, Zhao Y L, Ma Y, Yao J N 2014 Adv. Mater. 26 2831
[28] Li X M, Wang R, Zhang F, Zhou L, Shen D K, Yao C, Zhao D Y 2013 Sci. Rep. 3 3536
[29] Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732
[30] Tian D P, Gao D L, Chong B, Liu X Z 2015 Dalton Trans. 44 4133
[31] Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369
[32] Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505
[33] Gao D L, Tian D, Xiao G, Chong B, Yu G, Pang Q 2015 Opt. Lett. 40 3580
[34] Zhang X Y, Gao D L, Li L 2010 J. Appl. Phys. 107 123528
[35] Gao D L, Zheng H R, Tian Y, Cui M, Lei Y, He E J, Zhang X S 2010 J. Nanosci. Nanotechnol. 10 7694
[36] Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212
[37] Zheng H R, Gao D L, Zhang X Y, He E J, Zhang X S 2008 J. Appl. Phys. 104 3506
[38] Pollnau M, Gamelin D R, Lthi S R, Gdel H U, Hehlen M P 2000 Phys. Rev. B 61 3337
[39] Wang F, Liu X 2009 Chem. Soc. Rev. 38 976
[40] Pan Z, Morgan S H, Dyer K, Ueda A, Liu H 1996 J. Appl. Phys. 79 8906
计量
- 文章访问数: 5920
- PDF下载量: 253
- 被引次数: 0