搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gd3(Al,Ga)5O12:Ce闪烁晶体缺陷对其发光性能的影响

孟猛 祁强 赫崇君 丁栋舟 赵书文 施俊杰 任国浩

引用本文:
Citation:

Gd3(Al,Ga)5O12:Ce闪烁晶体缺陷对其发光性能的影响

孟猛, 祁强, 赫崇君, 丁栋舟, 赵书文, 施俊杰, 任国浩

Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals

Meng Meng, Qi Qiang, He Chong-Jun, Ding Dong-Zhou, Zhao Shu-Wen, Shi Jun-Jie, Ren Guo-Hao
PDF
HTML
导出引用
  • 新型闪烁晶体Gd3(Al,Ga)5O12:Ce (GAGG:Ce)在制备过程中易出现包裹体及反格位缺陷等问题, 严重影响晶体的性能. 为了抑制这些缺陷以得到大尺寸高质量的GAGG:Ce晶体, 本文以Gd3(Al,Ga)5O12为基质、Ce3+为掺杂离子, 采用提拉法生长得到了GAGG:Ce晶体, 并对不同晶体部位的物相结构、微区成分、透光性质、发光及时间性能进行了测试和对比分析. 结果表明, GAGG:Ce晶体的透过谱中存在340和440 nm两处Ce3+特征吸收带, 且位于550 nm处的直线透过率为82%. 晶体尾部因杂相包裹体等宏观缺陷的影响, 导致其透过率下降至70%左右. 微区成分分析进一步表明GAGG:Ce晶体中存在三种类型的包裹体, 分别为富Gd相、富Ce相及(Al,Ga)2O3相. GAGG:Ce晶体的X射线激发发射谱中在550 nm附近存在Ce3+宽发射带, 且380 nm处还存在GdAl/Ga反格位缺陷引起的发射. 晶体中存在的杂相包裹体及GdAl/Ga反格位缺陷等因素导致Ce3+在GAGG基质的发光强度下降12.5%; GdAl/Ga反格位离子与近邻Ce的隧穿效应使得GAGG:Ce晶体的衰减时间由117.7 ns延长至121.9 ns, 且慢分量比例由16%增加至17.2%.
    There are many problems during the preparation of the scintillation crystal Gd3(Al,Ga)5O12:Ce (abbreviated as GAGG:Ce), such as inclusions and antisite-defect. In order to inhibit these defects and obtain large-size and high-quality GAGG:Ce crystal, this study uses Gd3(Al,Ga)5O12 as the matrix and Ce3+ as the doping ions to grow the GAGG:Ce crystal by the Czochralski method. The phase structure, micro-region composition, optical and scintillation properties of GAGG:Ce are tested and compared. It is found that tipical Ce3+ absorption bands are at 340 nm and 440 nm, and the linear transmittance at 550 nm is 82%. The transmittance of the crystal tail drops to about 70% due to the macroscopic defects such as inclusions. The micro-region composition analysis shows that the three types of inclusions in GAGG:Ce crystal are Gd-rich phase, Ce-rich phase, and (Al,Ga)2O3 phase. The Ce3+ ion emission wavelength of GAGG:Ce crystal is about 550 nm excited by the X-ray, and there is also an emission wavelength caused by the GdAl/Ga antisite-defect at 380 nm. The emission intensity of GdAl/Ga antisite-defect in the lack of (Al,Ga) component is higher than that in the excess (Al,Ga) component. The inclusions and GdAl/Ga antisite-defect make the luminous efficiency of GAGG:Ce crystal decrease by 12.5% and the corresponding light yield decreases from 58500 to 52000 photon/MeV. The tunneling effect between GdAl/Ga antisite-defect ions and neighboring Ce3+ ions makes the decay time of the GAGG:Ce crystal extend from 117.7 to 121.9 ns, and the ratio of slow component increases from 16% to 17.2%. The migration of energy along the Gd3+ sublattice makes the rise time of the GAGG:Ce crystal extend from 8.6 to 10.7 ns. The above conclusions further deepen the understanding of the source of inclusions and the relationship between the GdAl/Ga antisite-defect and crystal composition, and provide a theoretical basis for restraining the defects and improving the crystal properties.
      通信作者: 赫崇君, hechongjun@nuaa.edu.cn ; 丁栋舟, dongzhou_ding@mail.sic.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61675095)、“中国科学院关键技术人才”基金(批准号: Y74YQ3130G)、海西研究院自主部署基金(批准号: FJCXY18040202)、南京航空航天大学空间光电探测与感知工业和信息化部重点实验室开放课题(批准号: NJ2020021-2)和中央高校基本科研业务费(批准号: NJ2020021)资助的课题
      Corresponding author: He Chong-Jun, hechongjun@nuaa.edu.cn ; Ding Dong-Zhou, dongzhou_ding@mail.sic.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675095), the Key Technical Talents of the Chinese Academy of Sciences, China (Grant No. Y74YQ3130G), the Independent Deployment Project of Hercynian Research Institute of Chinese Academy of Sciences, China (Grant No. FJCXY18040202), the Open Project Funds for the Key Laboratory of Space Photoelectric Detection and Perception (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, China (Grant No. NJ2020021-2), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. NJ2020021)
    [1]

    何伟, 张约品, 王金浩, 王实现, 夏海平 2011 60 042901Google Scholar

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901Google Scholar

    [2]

    孟猛, 祁强, 丁栋舟, 赫崇君, 施俊杰, 任国浩 2019 人工晶体学报 48 8Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Shi J J, Ren G H 2019 J. Synth. Cryst. 48 8Google Scholar

    [3]

    Sakthong O, Chewpraditkul W, Wanarak C, Kamada K, Yoshikawa A, Prusa P, Nikl M 2014 Nucl. Instrum. Methosds Phys. Res. A 751 1Google Scholar

    [4]

    Tamagawa Y, Inukai Y, Ogawa I, Kobayashi M 2015 Nucl. Instrum. Methods Phys. Res. A 795 192Google Scholar

    [5]

    Kochurikhin V, Kamada K, Kim J, Ivanov M, Yoshikawa A 2020 J. Cryst. Growth 531 1Google Scholar

    [6]

    冯大建, 丁雨憧, 刘军, 李和新, 付昌禄, 胡少勤 2016 压电与声光 38 430

    Feng D J, Ding Y C, Liu J, Li H X, Fu C L, Hu S Q 2016 Piezoelectrics Acoustooptics 38 430

    [7]

    Kamada K, Takayuki A, Yanagida T, Endo T, Tsutumi K, Usuki Y, Nikl M, Fujimoto Y, Fukabori A, Yoshikawa A 2012 J. Cryst. Growth 352 88Google Scholar

    [8]

    Wang C, Wu Y T, Ding D Z, Li H Y, Chen X F, Shi J, Ren G H 2016 Nucl. Instrum. Methods Phys. Res. A 820 8Google Scholar

    [9]

    Chewpraditkul W, Panek D, Bruza P, Chewpraditkul W, Wanarak C, Pattanaboonmee N, Babin V, Bartosiewicz K, Kamada K, Yoshikawa A, Nikl M 2014 J. Appl. Phys. 116 083505Google Scholar

    [10]

    Kitaura M, Watanabe S, Kamada K, Kim J K, Yoshino M, Kurosawa S, Yagihashi T, Ohnishi A, Hara K 2018 Appl. Phys. Lett. 113 041906Google Scholar

    [11]

    丁栋舟, 李焕英, 秦来顺, 卢胜, 潘尚可, 任国浩 2010 无机材料学报 25 1021Google Scholar

    Ding D Z, Li H Y, Qin L S, Lu S, Pan S K, Ren G H 2010 J. Inorg. Mater. 25 1021Google Scholar

    [12]

    孟猛, 祁强, 丁栋舟, 赫崇君, 赵书文, 万博, 陈露, 施俊杰, 任国浩 2020 无机材料学报Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Zhao S W, Wan B, Chen L, Shi J J, Ren G H 2020 J. Inorg. Mater.Google Scholar

    [13]

    鲁万成, 张庆礼, 罗建乔, 丁守军, 窦仁勤, 彭方, 张会丽, 王小飞, 孙贵花, 孙敦陆 2017 66 154204Google Scholar

    Lu W C, Zhang Q L, Luo J Q, Ding S J, Dou R Q, Peng F, Zhang H L, Wang X F, Sun G H, Sun D L 2017 Acta Phys. Sin. 66 154204Google Scholar

    [14]

    Kurosawa S, Shoji Y, Yokota Y, Kamada K, Chani V, Yoshikawa A 2014 J. Cryst. Growth 393 134Google Scholar

    [15]

    Etiennette A, Ramunas A, Andrei F, Georgy D, Larisa G, Vidmantas G, Merry K, Marco L, Charles M, Saulius L, Gintautas T, Augustas V, Aleksejs Z, Mikhail K 2018 Phys. Status Solidi A 215 1700798Google Scholar

    [16]

    Mares J A, Nikl M, Beitlerova A, Solovieva N, Ambrosio C, Blazek K, Maly P, Nejezchle K, Fabeni P, Pazzi P 2005 Nucl. Instrum. Methods Phys. Res. A 537 271Google Scholar

    [17]

    Stanek C R, McClellana C J, Levyb M R, Milanese C, Grimes R W 2007 Nucl. Instrum. Methods Phys. Res. A 579 27Google Scholar

    [18]

    杨新波, 石云, 李红军, 毕群玉, 苏良碧, 刘茜, 潘裕柏, 徐军 2009 58 8050Google Scholar

    Yang X B, Shi Y, Li H J, Bi Q Y, Su L B, Liu Q, Pan Y B, Xu J 2009 Acta Phys. Sin. 58 8050Google Scholar

    [19]

    Yoshino M, Kamada K, Shoji Y, Yamaji A, Kurosawa S, Kurosawa Y, Ohashi Y, Yoshikawa A, Chani V 2017 J. Cryst. Growth 468 420Google Scholar

    [20]

    Kamada K, Kurosawa S, Prusa P, Nikl M, Kochurikhin V, Endo T, Tsutumi K, Sato H, Yokota K, Y, Sugiyama K, Yoshikawa A 2014 Opt. Mater. 36 1942Google Scholar

    [21]

    杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 61 192901Google Scholar

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901Google Scholar

    [22]

    Zorenko Y 2005 Phys. Status Solidi C 26 375Google Scholar

  • 图 1  GAGG:Ce晶体及样品照片

    Fig. 1.  Photos of GAGG:Ce crystal and samples.

    图 2  GAGG:Ce样品粉末XRD图谱

    Fig. 2.  XRD patterns of GAGG:Ce crystal.

    图 3  GAGG:Ce晶体的能级结构图(a)与透过谱(b)

    Fig. 3.  Energy diagram (a) and transmittance (b) of GAGG:Ce crystal sample.

    图 4  GAGG:Ce晶体微区形貌分析 (a) 片状包裹体; (b) 黑白相间状包裹体

    Fig. 4.  Micro-region morphology analysis of GAGG:Ce crystal: (a) Lamellar inclusions; (b) black and white interphase inclusions.

    图 5  GAGG:Ce晶体的X射线激发发射谱(a)和积分强度(b)

    Fig. 5.  X-ray excited spectra (a) and integrated intensity (b) of GAGG:Ce crystal.

    图 6  室温下GAGG:Ce样品在137Cs源激发下的多道能谱(HV, 高压)

    Fig. 6.  Multi-channel energy spectra of GAGG:Ce crystal excited by 137Cs (HV, high voltage)

    图 7  不同基质成分的GAGG:Ce晶体能级示意图

    Fig. 7.  Schematic energy level diagrams of GAGG:Ce crystal with different matrix components.

    图 8  GAGG:Ce晶体归一化后的光产额与成形时间相关性. 以0.75 μs为标准, 实线为模型拟合曲线

    Fig. 8.  Light yield dependence on amplifier shaping time normalized at 0.75 μs for GAGG:Ce crystal, where solid lines are the fitting curve.

    图 9  GAGG:Ce晶体的闪烁衰减时间

    Fig. 9.  Scintillation decay curve of GAGG:Ce crystal

    表 1  GAGG:Ce晶体的EDS成分分析

    Table 1.  Composition analysis data by EDS of GAGG:Ce crystal.

    SampleGdAlGaAl + Ga
    ion ratio
    13.0342.2742.6924.966
    22.9852.2132.8025.015
    Theoretical value32.32.75
    下载: 导出CSV

    表 2  GAGG:Ce晶体的晶胞参数

    Table 2.  Lattice parameters of GAGG:Ce crystal at different positions.

    Sample12
    Diffractive angle (2θ)/(°)32.832.73
    Lattice parameters/nm12.249212.2516
    下载: 导出CSV

    表 3  GAGG:Ce晶体的EDS能谱微区成分分析数据

    Table 3.  Micro-region composition analysis data by EDS of GAGG:Ce crystal.

    取样点GdCeAlGaAl + GaO(Gd + Ce)∶(Al + Ga)∶O
    Atomic percentage离子数之比
    117.6110.3312.0622.39603.5∶4.5∶12
    214.9711.1113.9225.03603∶5∶12
    33.7120.574.4511.2615.71604.9∶3.1∶12
    41.1917.920.9138.81600.06∶2∶3
    515.0610.6314.3124.94603∶5∶12
    下载: 导出CSV
    Baidu
  • [1]

    何伟, 张约品, 王金浩, 王实现, 夏海平 2011 60 042901Google Scholar

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901Google Scholar

    [2]

    孟猛, 祁强, 丁栋舟, 赫崇君, 施俊杰, 任国浩 2019 人工晶体学报 48 8Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Shi J J, Ren G H 2019 J. Synth. Cryst. 48 8Google Scholar

    [3]

    Sakthong O, Chewpraditkul W, Wanarak C, Kamada K, Yoshikawa A, Prusa P, Nikl M 2014 Nucl. Instrum. Methosds Phys. Res. A 751 1Google Scholar

    [4]

    Tamagawa Y, Inukai Y, Ogawa I, Kobayashi M 2015 Nucl. Instrum. Methods Phys. Res. A 795 192Google Scholar

    [5]

    Kochurikhin V, Kamada K, Kim J, Ivanov M, Yoshikawa A 2020 J. Cryst. Growth 531 1Google Scholar

    [6]

    冯大建, 丁雨憧, 刘军, 李和新, 付昌禄, 胡少勤 2016 压电与声光 38 430

    Feng D J, Ding Y C, Liu J, Li H X, Fu C L, Hu S Q 2016 Piezoelectrics Acoustooptics 38 430

    [7]

    Kamada K, Takayuki A, Yanagida T, Endo T, Tsutumi K, Usuki Y, Nikl M, Fujimoto Y, Fukabori A, Yoshikawa A 2012 J. Cryst. Growth 352 88Google Scholar

    [8]

    Wang C, Wu Y T, Ding D Z, Li H Y, Chen X F, Shi J, Ren G H 2016 Nucl. Instrum. Methods Phys. Res. A 820 8Google Scholar

    [9]

    Chewpraditkul W, Panek D, Bruza P, Chewpraditkul W, Wanarak C, Pattanaboonmee N, Babin V, Bartosiewicz K, Kamada K, Yoshikawa A, Nikl M 2014 J. Appl. Phys. 116 083505Google Scholar

    [10]

    Kitaura M, Watanabe S, Kamada K, Kim J K, Yoshino M, Kurosawa S, Yagihashi T, Ohnishi A, Hara K 2018 Appl. Phys. Lett. 113 041906Google Scholar

    [11]

    丁栋舟, 李焕英, 秦来顺, 卢胜, 潘尚可, 任国浩 2010 无机材料学报 25 1021Google Scholar

    Ding D Z, Li H Y, Qin L S, Lu S, Pan S K, Ren G H 2010 J. Inorg. Mater. 25 1021Google Scholar

    [12]

    孟猛, 祁强, 丁栋舟, 赫崇君, 赵书文, 万博, 陈露, 施俊杰, 任国浩 2020 无机材料学报Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Zhao S W, Wan B, Chen L, Shi J J, Ren G H 2020 J. Inorg. Mater.Google Scholar

    [13]

    鲁万成, 张庆礼, 罗建乔, 丁守军, 窦仁勤, 彭方, 张会丽, 王小飞, 孙贵花, 孙敦陆 2017 66 154204Google Scholar

    Lu W C, Zhang Q L, Luo J Q, Ding S J, Dou R Q, Peng F, Zhang H L, Wang X F, Sun G H, Sun D L 2017 Acta Phys. Sin. 66 154204Google Scholar

    [14]

    Kurosawa S, Shoji Y, Yokota Y, Kamada K, Chani V, Yoshikawa A 2014 J. Cryst. Growth 393 134Google Scholar

    [15]

    Etiennette A, Ramunas A, Andrei F, Georgy D, Larisa G, Vidmantas G, Merry K, Marco L, Charles M, Saulius L, Gintautas T, Augustas V, Aleksejs Z, Mikhail K 2018 Phys. Status Solidi A 215 1700798Google Scholar

    [16]

    Mares J A, Nikl M, Beitlerova A, Solovieva N, Ambrosio C, Blazek K, Maly P, Nejezchle K, Fabeni P, Pazzi P 2005 Nucl. Instrum. Methods Phys. Res. A 537 271Google Scholar

    [17]

    Stanek C R, McClellana C J, Levyb M R, Milanese C, Grimes R W 2007 Nucl. Instrum. Methods Phys. Res. A 579 27Google Scholar

    [18]

    杨新波, 石云, 李红军, 毕群玉, 苏良碧, 刘茜, 潘裕柏, 徐军 2009 58 8050Google Scholar

    Yang X B, Shi Y, Li H J, Bi Q Y, Su L B, Liu Q, Pan Y B, Xu J 2009 Acta Phys. Sin. 58 8050Google Scholar

    [19]

    Yoshino M, Kamada K, Shoji Y, Yamaji A, Kurosawa S, Kurosawa Y, Ohashi Y, Yoshikawa A, Chani V 2017 J. Cryst. Growth 468 420Google Scholar

    [20]

    Kamada K, Kurosawa S, Prusa P, Nikl M, Kochurikhin V, Endo T, Tsutumi K, Sato H, Yokota K, Y, Sugiyama K, Yoshikawa A 2014 Opt. Mater. 36 1942Google Scholar

    [21]

    杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 61 192901Google Scholar

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901Google Scholar

    [22]

    Zorenko Y 2005 Phys. Status Solidi C 26 375Google Scholar

  • [1] 程凯, 魏鑫, 曾德凯, 季选韬, 朱坤, 王晓冬. 基于微结构气体探测器对单能和连续谱快中子的模拟解谱.  , 2021, 70(11): 112901. doi: 10.7498/aps.70.20201954
    [2] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像.  , 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [3] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [4] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量.  , 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [5] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感.  , 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [6] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究.  , 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [7] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦.  , 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [8] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究.  , 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [9] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理.  , 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [10] 樊瑞睿, 侯凤杰, 欧阳群, 范胜男, 陈元柏, 伊福廷. micro-bulk工艺micromegas的研究.  , 2012, 61(9): 092901. doi: 10.7498/aps.61.092901
    [11] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究.  , 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [12] 李盼来, 王志军, 王颖, 杨志平, 郭庆林, 李旭, 杨艳民, 傅广生. Ce3+在LiBaBO3中的发光特性及晶体学格位.  , 2009, 58(8): 5831-5835. doi: 10.7498/aps.58.5831
    [13] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像.  , 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [14] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性.  , 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [15] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究.  , 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [16] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究.  , 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [17] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法.  , 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
    [18] 刘 力, 邓小强, 王桂英, 徐至展. 改善共焦系统轴向分辨率的位相型光瞳滤波器.  , 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
    [19] 李晨曦, 陆坤权, 赵雅琴. 能量分辨率对EXAFS的影响.  , 1987, 36(11): 1496-1502. doi: 10.7498/aps.36.1496
    [20] 童林夙, 尹涵春. 介质靶成象过程分辨率的研究.  , 1983, 32(8): 1043-1052. doi: 10.7498/aps.32.1043
计量
  • 文章访问数:  7112
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 修回日期:  2020-11-17
  • 上网日期:  2021-03-09
  • 刊出日期:  2021-03-20

/

返回文章
返回
Baidu
map