-
Understanding the oxygen bubble evolution on the electrode surface is important to enhance the efficiency of large-scale water decomposition. In this paper, a numerical model for the growth of oxygen bubbles on the electrode surface based on the dissolved oxygen flux at the bubble boundary is proposed, and the mechanisms of the reaction area and current on the bubble growth are investigated. The results show that the bubble diameters calculated from the oxygen flux at the bubble boundary are in good agreement with the growth of the bubbles in the control phase of the chemical reaction. As the reaction region increases, the transition time from the diffusion-controlled to the chemical reaction-controlled stage becomes longer during the bubble growth. The concentration maximum on the microelectrode surface is significantly higher than that on the large electrode surface, which leads to a steeper concentration gradient between the microelectrode surface and the bubble surface. As the current increases, the bubble growth rate increases and the time coefficient decreases faster. The bubble diameter at a current of 0.06 mA agrees well with the bubble diameter at a current of 0.1 mA in the photoelectrochemical water splitting experiments. This is because the scattering of light by the growing bubbles leads to a decrease in the current density at the bottom of the bubble.
-
Keywords:
- oxygen bubble evolution /
- time coefficient /
- numerical simulation /
- photoelectrochemical water splitting
-
[1] Zhang S, Chen W 2022Nat Commun 13 87
[2] Angulo A, Linde P van der, Gardeniers H, Modestino M, Fernández Rivas D 2020Joule 4 555
[3] Iwata R, Zhang L, Wilke K L, Gong S, He M, Gallant B M, Wang E N 2021Joule 5 887
[4] Chen J, Guo L, Hu X, Cao Z, Wang Y 2018Electrochimica Acta 274 57
[5] Andaveh R, Darband G B, Maleki M, Rouhaghdam A S 2022J. Mater. Chem. A 10 5147
[6] Zhan S, Yuan R, Huang Y, Zhang W, Li B, Wang Z, Wang J 2022Physics of Fluids 34 112120
[7] GUO L,CAO Z,WANG Y 2023 Journal of Xi'an Jiaotong University 571 (in Chinese) [郭烈锦, 曹振山, 王晔春, 张博, 冯雨杨, 徐强2023西安交通大学学报571]
[8] Peñas P, Moreno Soto Á, Lohse D, Lajoinie G, van der Meer D 2021Int. J. Heat Mass Transfer 174 121069
[9] Luo X, Xu Q, Ye X, Wang M, Guo L 2024International Journal of Hydrogen Energy 61 859
[10] Luo X, Xu Q, Nie T, She Y, Ye X, Guo L 2023Phys. Chem. Chem. Phys. 25 16086
[11] Park S, Liu L, Demirkır Ç, Van Der Heijden O, Lohse D, Krug D, Koper M T M 2023Nat. Chem. 15 1532
[12] Da Silva J, Nobrega E, Staciaki F, Almeida F R, Wosiak G, Gutierrez A, Bruno O, Lopes M C, Pereira E 2024Chemical Engineering Journal 494 152943
[13] Xu Q, Tao L, Nie T, Liang L, She Y, Wang M 2024J. Electrochem. Soc. 171 016501
[14] Bashkatov A, Park S, Demirkır Ç, Wood J A, Koper M T M, Lohse D, Krug D 2024J. Am. Chem. Soc.
[15] Zhang B, Wang Y, Feng Y, Zhen C, Liu M, Cao Z, Zhao Q, Guo L 2024Cell Rep. Phys. Sci. 101837
[16] Liu H, Pan L ming, Wen J 2016Can. J. Chem. Eng. 94 192
[17] Meulenbroek A M, Vreman A W, Deen N G 2021Electrochimica Acta 385 138298
[18] Zhan S, Yuan R, Wang X, Zhang W, Yu K, Li B, Wang Z, Wang J 2023Physics of Fluids 35 032111
[19] Raman A, Porto C C D S, Gardeniers H, Soares C, Fernández Rivas D, Padoin N 2023Chemical Engineering Journal 477 147012
[20] Meulenbroek A M, Deen N G, Vreman A W 2024Electrochimica Acta 497 144510
[21] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M 2017Chem. Soc. Rev. 46 337
[22] Chen J, Guo L 2019Appl. Phys. Lett. 114 231604
[23] Obata K, F. Abdi F 2021Sustainable Energy & Fuels 5 3791
[24] Matsushima H, Kiuchi D, Fukunaka Y, Kuribayashi K 2009Electrochemistry Communications 11 1721
[25] Cao Z, Wang Y, Xu Q, Feng Y, Hu X, Guo L 2020Electrochimica Acta 347 136230
[26] Fernández D, Maurer P, Martine M, Coey J M D, Möbius M E 2014Langmuir 30 13065
[27] Yang X, Karnbach F, Uhlemann M, Odenbach S, Eckert K 2015Langmuir 31 8184
[28] Xu Q, Tao L, She Y, Ye X, Wang M, Nie T 2023Journal of Electroanalytical Chemistry 935 117324
[29] Lu X, Nie T, Li X, Jing L, Zhang Y, Ma L, Jing D 2023Physics of Fluids 35 103314
[30] Nie T, Li Z, Luo X, She Y, Liang L, Xu Q, Guo L 2022Electrochimica Acta 436 141394
[31] Dorfi A E, West A C, Esposito D V 2017J. Phys. Chem. C 121 26587
[32] Holmes-Gentle I, Bedoya-Lora F, Alhersh F, Hellgardt K 2019J. Phys. Chem. C 123 17
Metrics
- Abstract views: 50
- PDF Downloads: 2
- Cited By: 0