Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin exchange of two spin-1/2 atoms

PAN Zeming YAO Zhihai GAO Chao TAN Naiming WANG Xiaoqian

Citation:

Spin exchange of two spin-1/2 atoms

PAN Zeming, YAO Zhihai, GAO Chao, TAN Naiming, WANG Xiaoqian
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The quantum Cheshire cat effect is an important phenomenon in quantum mechanics that reveals the separability of physical properties from their carriers. This effect transcends the classical framework whose attributes must be inherently attached to objects, providing new perspectives for quantum information and precision measurement. Based on the quantum Cheshire cat effect, we prepare a pre-selected state of a spin-1/2 atomic system composed of two particles through a pre-selection process. We conduct quantum weak measurements on the spins and positions of these two atoms and extract weak values using the method of imaginary time evolution (ITE)(Fig.(1)). Subsequently, we perform post-selection on these two atoms, designing two distinct post-selected states. Initially, we calculate analytical solutions when both atoms encounter these two different post-selected states separately. Then, during the stage of obtaining weak values via ITE, we first discuss the scenario with only one post-selected state. In this case, our experimental goal is to achieve spin exchange between the two atoms. We apply ITE to obtain normalized coincidence rate for the system. By performing linear fitting on these normalized coincidence rate, we derive numerical solutions for the system’s weak values. A comparison between analytical and numerical solutions indicates that they are in close agreement, demonstrating that our method facilitates spin exchange between the two atoms. Next, we examine scenarios involving both post-selected states during post-selection. After completing weak measurements on particles, delayed-choice allows them to evolve along different paths ultimately leading to distinct post-selected states. One particular post-selected state resulted in final measurement outcomes indicates that spin exchange occurs between both particles with amplification. Conversely, the other post-selected state ensures that, even after undergoing weak measurement and delayed-choice, the states of the two particles remain consistent with their pre-measurement conditions. We also compare the analytical and numerical solutions of the experiment involving delayedchoice and find them to be largely consistent. This consistency indicates that delayed-choice indeed has a significant impact on whether the final exchange occurs. Our research theoretically confirms the feasibility of fermionic systems within bipartite quantum Cheshire cat effects and illustrates how delayed-choice influences quantum Cheshire cat effects in spin- 1/2 atomic systems
  • [1]

    Aharonov Y, Popescu S, Rohrlich D, Skrzypczyk P 2013 New J. Phys. 15113015

    [2]

    Denkmayr T, Geppert H, Sponar S, Lemmel H, Matzkin A, Tollaksen J, Hasegawa Y 2014 Nat. Commun. 54492

    [3]

    Danner A, Geerits N, Lemmel H, Wagner R, Sponar S, Hasegawa Y 2024 Commun. Phys. 714

    [4]

    Kim Y, Im D G, Kim Y S, Han S W, Moon S, Kim Y H, Cho Y W 2021 npj. Quantum. Inf. 713

    [5]

    Das D, Sen U 2021 Phys. Rev. A 103012228

    [6]

    Richter M, Dziewit B, Dajka J 2018 Adv. Math. Phys. 20187060586

    [7]

    Li J K, Sun K, Wang Y, Hao Z Y, Liu Z H, Zhou J, Fan X Y, Chen J L, Xu J S, Li C F, Guo G C 2023 Light Sci. Appl. 1218

    [8]

    Wagner R, Kersten W, Lemmel H, Sponar S, Hasegawa Y 2023 Sci. Rep. 133865

    [9]

    Ghoshal A, Sau S, Das D, Sen U 2023 Phys. Rev. A 107052214

    [10]

    Hance J R, Ladyman J, Rarity J 2024 New J. Phys. 26073038

    [11]

    Das D, Pati A K 2020 New J. Phys. 22063032

    [12]

    Liu Z H, Pan W W, Xu X Y, Yang M, Zhou J, Luo Z Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2020 Nat. Commun. 113006

    [13]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 601351

    [14]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 661107

    [15]

    Bloch I, Zoller P 2006 New J. Phys. 8 E02

    [16]

    Puentes G 2015 J. Phys. B. 48245301

    [17]

    Mao Y, Chaudhary M, Kondappan M, Shi J, Ilo-Okeke E O, Ivannikov V, Byrnes T 2023 Phys. Rev. Lett. 131110602

    [18]

    Aharonov Y, Bergmann P G, Lebowitz J L 1964 Phys. Rev. 134 B1410

    [19]

    Wheeler J A 1978 In Mathematical foundations of quantum theory (Elsevier), pp 9–48

    [20]

    Witten E 2018 Rev. Mod. Phys. 90045003

    [21]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80517

    [22]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81865

    [23]

    Wick G C 1954 Phys. Rev. 961124

    [24]

    Landsman N, van Weert C 1987 Phys. Rep. 145141

    [25]

    Xu J S, Sun K, Han Y J, Li C F, Pachos J K, Guo G C 2016 Nat. Commun. 713194

    [26]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86307

  • [1] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, doi: 10.7498/aps.72.20222166
    [2] Wang Yi-Nuo, Song Zhao-Yang, Ma Yu-Lin, Hua Nan, Ma Hong-Yang. Color image encryption algorithm based on DNA code and alternating quantum random walk. Acta Physica Sinica, doi: 10.7498/aps.70.20211255
    [3] Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming. Influence of entanglement on precision of parameter estimation in quantum weak measurement. Acta Physica Sinica, doi: 10.7498/aps.70.20210796
    [4] Li Bao-Min, Hu Ming-Liang, Fan Heng. Quantum coherence. Acta Physica Sinica, doi: 10.7498/aps.68.20181779
    [5] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, doi: 10.7498/aps.68.20182215
    [6] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20190039
    [7] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, doi: 10.7498/aps.66.144202
    [8] Li Zhuo, Xing Li-Juan. Error bases, group algebra and quantum codes. Acta Physica Sinica, doi: 10.7498/aps.62.130306
    [9] Peng Jin-Ye, Wang Yun-Jiang, Wang Xin-Mei, Bai Bao-Ming. Feedback sum-product decoding of sparse quantum codes for X-Z Pauli channels. Acta Physica Sinica, doi: 10.7498/aps.60.030306
    [10] Xing Li-Juan, Li Zhuo, Zhang Wu-Jun. Strengthened quantum Hamming bound. Acta Physica Sinica, doi: 10.7498/aps.60.050304
    [11] Wang Yun-Jiang, Bai Bao-Ming, Wang Xin-Mei. Feedback iterative decoding of sparse quantum codes. Acta Physica Sinica, doi: 10.7498/aps.59.7591
    [12] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, doi: 10.7498/aps.58.6786
    [13] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, doi: 10.7498/aps.57.2695
    [14] Xing Li-Juan, Li Zhuo, Bai Bao-Ming, Wang Xin-Mei. Encoding and decoding of quantum convolutional codes. Acta Physica Sinica, doi: 10.7498/aps.57.4695
    [15] Li Zhuo, Xing Li-Juan. Quantum Generalized Reed-Solomon codes. Acta Physica Sinica, doi: 10.7498/aps.57.28
    [16] Wang Zi-Wu, Xiao Jing-Lin. Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Physica Sinica, doi: 10.7498/aps.56.678
    [17] Li Zhuo, Xing Li-Juan. A family of asymptotically good quantum codes based on code concatenation. Acta Physica Sinica, doi: 10.7498/aps.56.5602
    [18] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, doi: 10.7498/aps.51.1439
    [19] Zhang Quan, Zhang Er-Yang. . Acta Physica Sinica, doi: 10.7498/aps.51.1684
    [20] Zhang Quan, Tang Chao-Jing, Gao Feng. . Acta Physica Sinica, doi: 10.7498/aps.51.15
Metrics
  • Abstract views:  163
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  13 March 2025

/

返回文章
返回
Baidu
map