-
The eigenstate thermalization hypothesis describes the nonequilibrium dynamics of an isolated quantum many-body system, during which a pure state becomes locally indistinguishable from a thermal ensemble. The discovery of quantum many-body scars (QMBS) shows a weak violation of ergodicity, characterized by coherent oscillations of local observables after a quantum quench. These states consist of the tower of regular eigenstates which are equally spaced in the energy spectrum. While subextensive entanglement scaling is a primary feature widely used to detect QMBS numerically as entropy outliers, rainbow scars exhibit a volume-law scaling, which may challenge this property. In this work, we construct the rainbow scar state in the fracton model on a two-leg ladder. The fracton model is composed of four-body ring-exchange interactions and hosts global time-reversal symmetry $\hat{\mathcal{T}}=\mathcal{K} i \hat{\sigma}^y$ and subsystem $\mathrm{U}(1)=\prod_{j \in\{\mathrm{row} / \mathrm{col}\}} e^{i \frac{\theta}{2} \hat{\sigma}_j^z}$ symmetry. The subsystem symmetry constrains particle mobility, hindering the establishment of thermal equilibrium and leading to a series of anomalous dynamical processes. We construct the rainbow scar state with distributed four-body GHZ states whose entanglement entropy follows the volume law. By calculating the eigenstates of the fracton model with exact diagonalization, the rainbow scar state consists of a series of degenerate high-energy excited states, which are not clearly outliers among other eigenstates in the spectrum. Introducing the on-site interaction to break the time-reversal symmetry, the degeneracy of rainbow scar states is lifted into an equally spaced tower of states, ensuring the revivals of the initial states. However, when subsystem U(1) symmetry is broken, the scar state is quickly thermalized, indicating that weak thermalization may be protected by subsystem U(1) symmetry. Additionally, we propose a scheme for preparing the rainbow scar state by modulating the strength of the four-body interactions and $\hat{\sigma}^z$ operations, analyzing the impact of noise on the strength of the four-body interactions. This work provides new insights for the study of weak thermalization processes in fracton model and helps to understand the nature of ETH-violation in different nonequilibrium systems.
-
[1] Polkovnikov A, Sengupta K, Silva A, Vengalattore M, 2011 Rev. Mod. Phys. 83, 863
[2] Dmitriev I A, Mirlin A D, Polyakov D G, Zudov M A, 2012 Rev. Mod. Phys. 84, 1709
[3] Pekola J P, Karimi B, 2021 Rev. Mod. Phys. 93, 041001
[4] Deutsch J M, 1991 Phys. Rev. A 43, 2046
[5] Srednicki M, 1994 Phys. Rev. E 50, 888
[6] Rigol M, Dunjko V, Yurovsky V, Olshanii M, 2007 Phys. Rev. Lett. 98, 050405
[7] Calabrese P, Essler F H L, Fagotti M, 2011 Phys. Rev. Lett. 106, 227203
[8] Nandkishore R, Huse D A, 2015 Annu. Rev. Condens. Matter Phys. 6, 15
[9] Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I, 2015 Science 349, 842
[10] Moudgalya S, Rachel S, Bernevig B A, Regnault N, 2018 Phys. Rev. B 98, 235155
[11] Choi S, Turner C J, Pichler H, Ho W W, Michailidis A A, Papic Z, Serbyn M, Lukin M D, Abanin D A, 2019 Phys. Rev. Lett. 122, 220603
[12] Schecter M, Iadecola T, 2019 Phys. Rev. Lett. 123, 147201
[13] Shiraishi N, Mori T, 2017 Phys. Rev. Lett. 119, 030601
[14] Lin C J, Motrunich O I, 2019 Phys. Rev. Lett. 122, 173401
[15] Ok S, Choo K, Mudry C, Castelnovo C, Chamon C, Neupert T, 2019 Phys. Rev. Res. 1, 033144
[16] Langlett C M, Yang Z C, Wildeboer J, Gorshkov A V, Iadecola T, Xu S, 2022 Phys. Rev. B 105, L060301
[17] Wildeboer J, Langlett C M, Yang Z C, Gorshkov A V, Iadecola T, Xu S, 2022 Phys.Rev. B 106, 205142
[18] Iversen M, Bardarson J H, Nielsen E B, 2024 Phys. Rev. A 109, 023310
[19] Ramírez G, Rodríguez-Laguna J, Sierra G, 2015 J. Stat. Mech.: Theory Exp. P06002.
[20] Ramírez G, Rodríguez-Laguna J, Sierra G, 2014 J. Stat. Mech.: Theory Exp. P10004
[21] Dutta S, Kuhr S, Cooper N R, 2024 Phys. Rev. Research 6, L012039
[22] Byles L, Sierra G, Pachos J K, 2024 New J. Phys. 26, 013055
[23] Serbyn M, Abanin D A, Papić Z, 2021 Nat. Phys. 17, 675
[24] Moudgalya S, Bernevig B A, Regnault N, 2022 Rep. Prog. Phys. 85, 086501
[25] Srivatsa N S, Yarloo H, Moessner R, Nielsen E B, 2023 Phys.Rev. B 108, L100202
[26] Haah J, 2011 Phys. Rev. A 83, 042330
[27] Vijay S, Haah J, Fu L, 2016 Phys. Rev. B 94, 235157
[28] Pretko M, Radzihovsky L, 2018 Phys. Rev. Lett. 120, 195301
[29] Gromov A, Radzihovsky L, 2024 Rev. Mod. Phys. 96, 011001
[30] Du Y H, Mehta U, Nguyen D, Son D T, 2022 SciPost physics 12, 050
[31] Prem A, Huang S J, Song H, Hermele H, 2019 Phys. Rev. X 9, 021010
[32] Benedetti V, Bueno P, Magan J M, 2023 Phys. Rev. Lett. 131, 111603
[33] Prem A, Haah J, Nandkishore R, 2017 Phys. Rev. B 95, 155133
[34] Pretko M, 2017 Phys. Rev. B 96, 115102
[35] Pai S, Pretko M, 2019 Phys. Rev. Lett. 123, 136401
[36] Pretko M, Chen X, You Y, 2020 Int. J. Mod. Phys. A 35, 2030003
[37] Moudgalya S, Bernevig B A, Regnault N, 2022 Reports on Progress in Physics 85, 086501
[38] Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F, 2020 Phys. Rev. X 10, 011047
[39] Scherg S, Kohlert T, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M 2021 Nat Commun 12, 4490
[40] Kohlert T, Scherg S, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M, 2023 Phys. Rev. Lett. 130, 010201
[41] Adler D, Wei D, Will M, Srakaew K,Agrawal S, Weckesser P,Moessner R, Pollmann F, Bloch I, Aidelsburger M 2024 Nature 636, 80–85
[42] Imai S, Tsuji N, 2025 Phys. Rev. Research 7, 013064
[43] Weinberg P, Bukov M, 2019 SciPost Phys. 7, 020
[44] Aasen D, Bulmash D, Prem A, Slagle K, Williamson D J, 2020 Phys. Rev. Research 2, 043165
[45] You Y Z, Burnell F J, Hughes T L, 2021 Phys. Rev. B 103, 245128
[46] Paredes B, Bloch I, 2008 Phys. Rev. A 77, 023603
[47] Dai H N, Yang B, Reingruber A, Sun H, Xu X F, Chen Y A, Yuan Z S, Pan J W, 2017 Nat. Phys 13, 1195–1200
[48] Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U J, Zoller P, 2014 Ann. Phys. 351, 634
[49] Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F, 2020 Phys. Rev. B 101, 125126
[50] Khudorozhkov A, Tiwari A, Chamon C, Neupert3 T, 2022 SciPost Phys. 13, 098
[51] O’Dea N, Burnell F, Chandran A, Khemani V, 2020 Phys. Rev. Research 2, 043305
[52] Ren J, Liang C, Fang C, 2021 Phys. Rev. Lett. 126, 120604
[53] Zhao H Z, Smith A, Mintert F, Knolle J, 2021 Phys. Rev. Lett. 127, 150601
[54] Ho W W, Choi S Pichler H, Lukin M D, 2019 Phys. Rev. Lett. 122, 040603
[55] Mondragon-Shem I, Vavilov M G, Martin I, 2021 PRX Quantum 2, 030349
[56] Barmettler P, Rey A M, Demler E, Lukin M D, Bloch I, Gritsev V, 2008 Phys. Rev. A 78, 012330
[57] Alkurtass B, Banchi L, Bose S, 2014 Phys. Rev. A 90, 042304
[58] Xie YJ et al., (in preparation)
[59] Glaser S J, Boscain U, Calarco T, Koch C P, Köckenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T, Sugny D, Wilhelm F K, 2015 Eur. Phys. J. D 69, 279
[60] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L, 2019 Rev. Mod. Phys. 91, 045002
[61] Buijsman W, 2022 Phys. Rev. B 106, 045104
[62] Dong Y, Zhang S Y, Deng D L, 2023 Phys. Rev. B 108, 195133
[63] Schuster T, Kobrin B, Gao P, Cong I, Khabiboulline E T, Linke N M, Lukin M D, Monroe C, Yoshida B, Yao N Y, 2022 Phys. Rev. X 12, 031013
[64] Agarwal L, Langlett C M, and Xu S, 2023 Phys. Rev. Lett. 130, 020801
Metrics
- Abstract views: 100
- PDF Downloads: 6
- Cited By: 0