Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rainbow scar states in the fracton model

XIE Yanjun DAI Hanning

Citation:

Rainbow scar states in the fracton model

XIE Yanjun, DAI Hanning
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The eigenstate thermalization hypothesis describes the nonequilibrium dynamics of an isolated quantum many-body system, during which a pure state becomes locally indistinguishable from a thermal ensemble. The discovery of quantum many-body scars (QMBS) shows a weak violation of ergodicity, characterized by coherent oscillations of local observables after a quantum quench. These states consist of the tower of regular eigenstates which are equally spaced in the energy spectrum. While subextensive entanglement scaling is a primary feature widely used to detect QMBS numerically as entropy outliers, rainbow scars exhibit a volume-law scaling, which may challenge this property. In this work, we construct the rainbow scar state in the fracton model on a two-leg ladder. The fracton model is composed of four-body ring-exchange interactions and hosts global time-reversal symmetry $\hat{\mathcal{T}}=\mathcal{K} i \hat{\sigma}^y$ and subsystem $\mathrm{U}(1)=\prod_{j \in\{\mathrm{row} / \mathrm{col}\}} e^{i \frac{\theta}{2} \hat{\sigma}_j^z}$ symmetry. The subsystem symmetry constrains particle mobility, hindering the establishment of thermal equilibrium and leading to a series of anomalous dynamical processes. We construct the rainbow scar state with distributed four-body GHZ states whose entanglement entropy follows the volume law. By calculating the eigenstates of the fracton model with exact diagonalization, the rainbow scar state consists of a series of degenerate high-energy excited states, which are not clearly outliers among other eigenstates in the spectrum. Introducing the on-site interaction to break the time-reversal symmetry, the degeneracy of rainbow scar states is lifted into an equally spaced tower of states, ensuring the revivals of the initial states. However, when subsystem U(1) symmetry is broken, the scar state is quickly thermalized, indicating that weak thermalization may be protected by subsystem U(1) symmetry. Additionally, we propose a scheme for preparing the rainbow scar state by modulating the strength of the four-body interactions and $\hat{\sigma}^z$ operations, analyzing the impact of noise on the strength of the four-body interactions. This work provides new insights for the study of weak thermalization processes in fracton model and helps to understand the nature of ETH-violation in different nonequilibrium systems.
  • [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M, 2011 Rev. Mod. Phys. 83, 863

    [2]

    Dmitriev I A, Mirlin A D, Polyakov D G, Zudov M A, 2012 Rev. Mod. Phys. 84, 1709

    [3]

    Pekola J P, Karimi B, 2021 Rev. Mod. Phys. 93, 041001

    [4]

    Deutsch J M, 1991 Phys. Rev. A 43, 2046

    [5]

    Srednicki M, 1994 Phys. Rev. E 50, 888

    [6]

    Rigol M, Dunjko V, Yurovsky V, Olshanii M, 2007 Phys. Rev. Lett. 98, 050405

    [7]

    Calabrese P, Essler F H L, Fagotti M, 2011 Phys. Rev. Lett. 106, 227203

    [8]

    Nandkishore R, Huse D A, 2015 Annu. Rev. Condens. Matter Phys. 6, 15

    [9]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I, 2015 Science 349, 842

    [10]

    Moudgalya S, Rachel S, Bernevig B A, Regnault N, 2018 Phys. Rev. B 98, 235155

    [11]

    Choi S, Turner C J, Pichler H, Ho W W, Michailidis A A, Papic Z, Serbyn M, Lukin M D, Abanin D A, 2019 Phys. Rev. Lett. 122, 220603

    [12]

    Schecter M, Iadecola T, 2019 Phys. Rev. Lett. 123, 147201

    [13]

    Shiraishi N, Mori T, 2017 Phys. Rev. Lett. 119, 030601

    [14]

    Lin C J, Motrunich O I, 2019 Phys. Rev. Lett. 122, 173401

    [15]

    Ok S, Choo K, Mudry C, Castelnovo C, Chamon C, Neupert T, 2019 Phys. Rev. Res. 1, 033144

    [16]

    Langlett C M, Yang Z C, Wildeboer J, Gorshkov A V, Iadecola T, Xu S, 2022 Phys. Rev. B 105, L060301

    [17]

    Wildeboer J, Langlett C M, Yang Z C, Gorshkov A V, Iadecola T, Xu S, 2022 Phys.Rev. B 106, 205142

    [18]

    Iversen M, Bardarson J H, Nielsen E B, 2024 Phys. Rev. A 109, 023310

    [19]

    Ramírez G, Rodríguez-Laguna J, Sierra G, 2015 J. Stat. Mech.: Theory Exp. P06002.

    [20]

    Ramírez G, Rodríguez-Laguna J, Sierra G, 2014 J. Stat. Mech.: Theory Exp. P10004

    [21]

    Dutta S, Kuhr S, Cooper N R, 2024 Phys. Rev. Research 6, L012039

    [22]

    Byles L, Sierra G, Pachos J K, 2024 New J. Phys. 26, 013055

    [23]

    Serbyn M, Abanin D A, Papić Z, 2021 Nat. Phys. 17, 675

    [24]

    Moudgalya S, Bernevig B A, Regnault N, 2022 Rep. Prog. Phys. 85, 086501

    [25]

    Srivatsa N S, Yarloo H, Moessner R, Nielsen E B, 2023 Phys.Rev. B 108, L100202

    [26]

    Haah J, 2011 Phys. Rev. A 83, 042330

    [27]

    Vijay S, Haah J, Fu L, 2016 Phys. Rev. B 94, 235157

    [28]

    Pretko M, Radzihovsky L, 2018 Phys. Rev. Lett. 120, 195301

    [29]

    Gromov A, Radzihovsky L, 2024 Rev. Mod. Phys. 96, 011001

    [30]

    Du Y H, Mehta U, Nguyen D, Son D T, 2022 SciPost physics 12, 050

    [31]

    Prem A, Huang S J, Song H, Hermele H, 2019 Phys. Rev. X 9, 021010

    [32]

    Benedetti V, Bueno P, Magan J M, 2023 Phys. Rev. Lett. 131, 111603

    [33]

    Prem A, Haah J, Nandkishore R, 2017 Phys. Rev. B 95, 155133

    [34]

    Pretko M, 2017 Phys. Rev. B 96, 115102

    [35]

    Pai S, Pretko M, 2019 Phys. Rev. Lett. 123, 136401

    [36]

    Pretko M, Chen X, You Y, 2020 Int. J. Mod. Phys. A 35, 2030003

    [37]

    Moudgalya S, Bernevig B A, Regnault N, 2022 Reports on Progress in Physics 85, 086501

    [38]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F, 2020 Phys. Rev. X 10, 011047

    [39]

    Scherg S, Kohlert T, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M 2021 Nat Commun 12, 4490

    [40]

    Kohlert T, Scherg S, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M, 2023 Phys. Rev. Lett. 130, 010201

    [41]

    Adler D, Wei D, Will M, Srakaew K,Agrawal S, Weckesser P,Moessner R, Pollmann F, Bloch I, Aidelsburger M 2024 Nature 636, 80–85

    [42]

    Imai S, Tsuji N, 2025 Phys. Rev. Research 7, 013064

    [43]

    Weinberg P, Bukov M, 2019 SciPost Phys. 7, 020

    [44]

    Aasen D, Bulmash D, Prem A, Slagle K, Williamson D J, 2020 Phys. Rev. Research 2, 043165

    [45]

    You Y Z, Burnell F J, Hughes T L, 2021 Phys. Rev. B 103, 245128

    [46]

    Paredes B, Bloch I, 2008 Phys. Rev. A 77, 023603

    [47]

    Dai H N, Yang B, Reingruber A, Sun H, Xu X F, Chen Y A, Yuan Z S, Pan J W, 2017 Nat. Phys 13, 1195–1200

    [48]

    Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U J, Zoller P, 2014 Ann. Phys. 351, 634

    [49]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F, 2020 Phys. Rev. B 101, 125126

    [50]

    Khudorozhkov A, Tiwari A, Chamon C, Neupert3 T, 2022 SciPost Phys. 13, 098

    [51]

    O’Dea N, Burnell F, Chandran A, Khemani V, 2020 Phys. Rev. Research 2, 043305

    [52]

    Ren J, Liang C, Fang C, 2021 Phys. Rev. Lett. 126, 120604

    [53]

    Zhao H Z, Smith A, Mintert F, Knolle J, 2021 Phys. Rev. Lett. 127, 150601

    [54]

    Ho W W, Choi S Pichler H, Lukin M D, 2019 Phys. Rev. Lett. 122, 040603

    [55]

    Mondragon-Shem I, Vavilov M G, Martin I, 2021 PRX Quantum 2, 030349

    [56]

    Barmettler P, Rey A M, Demler E, Lukin M D, Bloch I, Gritsev V, 2008 Phys. Rev. A 78, 012330

    [57]

    Alkurtass B, Banchi L, Bose S, 2014 Phys. Rev. A 90, 042304

    [58]

    Xie YJ et al., (in preparation)

    [59]

    Glaser S J, Boscain U, Calarco T, Koch C P, Köckenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T, Sugny D, Wilhelm F K, 2015 Eur. Phys. J. D 69, 279

    [60]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L, 2019 Rev. Mod. Phys. 91, 045002

    [61]

    Buijsman W, 2022 Phys. Rev. B 106, 045104

    [62]

    Dong Y, Zhang S Y, Deng D L, 2023 Phys. Rev. B 108, 195133

    [63]

    Schuster T, Kobrin B, Gao P, Cong I, Khabiboulline E T, Linke N M, Lukin M D, Monroe C, Yoshida B, Yao N Y, 2022 Phys. Rev. X 12, 031013

    [64]

    Agarwal L, Langlett C M, and Xu S, 2023 Phys. Rev. Lett. 130, 020801

  • [1] Zhang Zheng-Yuan, Zhang Tian-Yi, Liu Zong-Kai, Ding Dong-Sheng, Shi Bao-Sen. Research progress of Rydberg many-body interaction. Acta Physica Sinica, doi: 10.7498/aps.69.20200649
    [2] Ye Shi-Qiang, Chen Xiao-Yu. Four-partite Bell inequalities based on quantum coherence. Acta Physica Sinica, doi: 10.7498/aps.66.200301
    [3] Xi Yu-Xing, Shan Chuan-Jia, Huang Yan-Xia. Quantum teleportation in an XXZ spin chain system with three-site interaction. Acta Physica Sinica, doi: 10.7498/aps.63.110305
    [4] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, doi: 10.7498/aps.58.1833
    [5] Jiang Li-Hua, Liu Fu-Sheng, Tian Chun-Ling. Many-body interactions between ions in LiH crystal and its equation of state under high pressure. Acta Physica Sinica, doi: 10.7498/aps.57.4412
    [6] Study of laser plasma interactions using Vlasov and Maxwell equations. Acta Physica Sinica, doi: 10.7498/aps.56.7084
    [7] Liu Zhan-Jun, Zheng Chun-Yang, Cao Li-Hua, Li Bin, Zhu Shao-Ping. Influence of under-dense plasma on laser conical target interaction. Acta Physica Sinica, doi: 10.7498/aps.55.304
    [8] Liu Hai-Lian, Wang Zhi-Guo, Yang Cheng-Quan, Shi Yun-Long. Ground state properties of spin-Peierls ladder model with interchain superexchange interactions. Acta Physica Sinica, doi: 10.7498/aps.55.3688
    [9] Tian Chun-Ling, Liu Fu-Sheng, Cai Ling-Cang, Jing Fu-Qian. Many-body contributions to the equation of state for highly compressed solid helium. Acta Physica Sinica, doi: 10.7498/aps.55.764
    [10] Zhang Yi, Li Yu-Tong, Zhang Jie, Chen Zheng-Lin, Kodama R.. Calculation of neutron spectrum in ultraintense laser-plasmas interactions. Acta Physica Sinica, doi: 10.7498/aps.54.4799
    [11] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, doi: 10.7498/aps.54.197
    [12] Tian Chun-Ling, Liu Fu-Sheng, Cai Ling-Cang, Jing Fu-Qian. Contributions of fourbody interactions to compressibility of solid helium. Acta Physica Sinica, doi: 10.7498/aps.52.1218
    [13] LIN XIU, LI HONG-CAI. PREPARATION OF MULTI-ATIOM GHZ STATES VIA THE RAMAN INTERACTION OF V-TYPE THREE-LEVEL ATOMSAND ONE CAVITY-FIELD. Acta Physica Sinica, doi: 10.7498/aps.50.1689
    [14] ZHANG GUO-MIN, YANG CHUAN-ZHANG. MONTE CARLO STUDY OF THE ORDER OF PHASE TRANSITION OF A MULTISPIN INTERACTIONS ISING MODEL. Acta Physica Sinica, doi: 10.7498/aps.42.1680
    [15] MA JING-XIU, XU ZHI-ZHAN. BISTABILITY IN THE INTERACTION OF INTENSE TWO-FREQUENCY LASER WITH PLASMA. Acta Physica Sinica, doi: 10.7498/aps.38.706
    [16] WANG FU-GAO, TANG KUN-FA, HU JIA-ZHEN. CRITICAL BEHAVIOUR OF ISING MODEL WITH THREE-SPIN INTERACTIONS ON THREE-NODE HIERARCHICAL LATTICES. Acta Physica Sinica, doi: 10.7498/aps.38.1196
    [17] HE XIAN-TU. THE INTERACTION OF PARTICLES WITH CAVITONS IN PLASMA. Acta Physica Sinica, doi: 10.7498/aps.36.199
    [18] XIONG XIAO-MING, ZHOU SHI-XUN. ENERGIES OF A FINITE 2D COULOMB INTERACTING ELECTRON GAS IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, doi: 10.7498/aps.36.1235
    [19] Xu Zhi-zhan, Yin Guang-yu, Zhang Yan-zhen, Lin Kang-chun. STIMULATED BRILLOUIN SCATTERING DUE TO LASER-PLASMA INTERACTIONS. Acta Physica Sinica, doi: 10.7498/aps.32.481
    [20] CHANG LI-NING, AN IN, CHEN TING-GIN, DAI YUAN-BENG. FOUR BODY DECAY OF Σ IN A COMPOSITE MODEL. Acta Physica Sinica, doi: 10.7498/aps.18.264
Metrics
  • Abstract views:  100
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  17 March 2025

/

返回文章
返回
Baidu
map