Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of B-spline method in precise calculation of structure of few-electron atoms

ZHANG Yonghui SHI Tingyun TANG Liyan

Citation:

Applications of B-spline method in precise calculation of structure of few-electron atoms

ZHANG Yonghui, SHI Tingyun, TANG Liyan
cstr: 32037.14.aps.74.20241728
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The precise spectra of few-electron atoms plays a pivotal role in advancing fundamental physics, including the verification of quantum electrodynamics (QED) theory, the determination of the fine-structure constants, and the exploration of nuclear properties. With the rapid development of precision measurement techniques, the demand for atomic structure data has evolved from simply confirming existence to pursuing unprecedented accuracy. To meet the growing needs for precision spectroscopy experiments, we develop a series of high-precision theoretical methods based on B-spline basis sets, such as the non-relativistic configuration interaction (B-NRCI) method, the correlated B-spline basis functions (C-BSBFs) method, and the relativistic configuration interaction (B-RCI) method. These methods use the unique properties of B-spline functions, such as locality, completeness, and numerical stability, to accurately solve the Schrödinger and Dirac equations for few-electron atoms. Our methods yield significant results, particularly for helium and helium-like ions. Using these methods, we obtain accurate energies, polarizabilities, tune-out wavelengths, and magic wavelengths. Specifically, we achieve high-precision measurements of the energy spectra of helium, providing vital theoretical support for conducting related experimental researches. Additionally, we make high-precision theoretical predictions of tune-out wavelengths, paving the way for new tests of QED theory. Furthermore, we propose effective theoretical schemes to suppress Stark shifts, thereby facilitating high-precision spectroscopy experiments of helium. The B-spline-basis methods reviewed in this paper prove exceptionally effective in high-precision calculations for few-electron atoms. These methods not only provide crucial theoretical support for precision spectroscopy experiments but also pave the new way for testing QED. Their ability to handle large-scale configuration interactions and incorporate relativistic and QED corrections makes them versatile tools for advancing atomic physics research. In the future, the high-precision theoretical methods based on B-spline basis sets are expected to be extended to cutting-edge fields, such as quantum state manipulation, determination of nuclear structure properties, formation of ultracold molecules, and exploration of new physics, thus continuously promoting the progress of precision measurement physics.
      Corresponding author: TANG Liyan, lytang@apm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174402, 12393821, 12274423, 12274417), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0920100, XDB0920101), and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences (Grant No. YSBR-055).
    [1]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [2]

    Patkóš V, Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94 052508Google Scholar

    [3]

    Patkóš V, Yerokhin V A, Pachucki K 2017 Phys. Rev. A 95 012508Google Scholar

    [4]

    Patkóš V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510Google Scholar

    [5]

    Patkóš V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 012803Google Scholar

    [6]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [7]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [8]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [9]

    Drake G W F, Dhindsa H S, Marton V J 2021 Phys. Rev. A 104 L060801Google Scholar

    [10]

    Bethe H A 1947 Phys. Rev. 72 339Google Scholar

    [11]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [12]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar

    [13]

    Drake G W F 2023 Handbook of Atomic, Molecular and Optical Physics (Cham: Springer Nature Switzerland AG 2023) pp2522–8706

    [14]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [15]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [16]

    James H M, Coolidge A S 1935 Phys. Rev. 47 700

    [17]

    Mitroy J, Bubin S, Horiuchi W, Suzuki Y, Adamowicz L, Cencek W, Szalewicz K, Komasa J, Blume D, Varga K 2013 Rev. Mod. Phys. 85 693Google Scholar

    [18]

    McKenzie D M, Drake G W F 1991 Phys. Rev. A 44 R6973Google Scholar

    [19]

    Drake G W F, Yan Z C 1992 Phys. Rev. A 46 2378Google Scholar

    [20]

    Yan Z C, Drake G W F 1995 Phys. Rev. A 52 3711Google Scholar

    [21]

    Yan Z, Drake G W F 1997 J. Phys. B 30 4723Google Scholar

    [22]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [23]

    Rooij R V, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [24]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [25]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121 143002Google Scholar

    [26]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801Google Scholar

    [27]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [28]

    Schoenberg I J 1946 Quart. Appl. Math. 4 45Google Scholar

    [29]

    Schoenberg I J 1967 On Spline Functions//Shisha O Inequalities (New York: Academic Press) pp255–291

    [30]

    De Boor C 1978 A Practical Guide to Splines (New York: Springer) p157

    [31]

    Johnson W R, Sapirstein J 1986 Phys. Rev. Lett. 57 1126Google Scholar

    [32]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 307Google Scholar

    [33]

    Grant I P 1982 Phys. Rev. A 25 1230Google Scholar

    [34]

    Fischer C F 2008 Adv. At. Mol. Opt. Phys. 55 235

    [35]

    Bachau H, Cormier E, Decleva P, Hansen J E, Martín F 2001 Rep. Prog. Phys. 64 1815Google Scholar

    [36]

    Xi J H, He X H, Li B W 1992 Phys. Rev. A 46 5806Google Scholar

    [37]

    Xi J H, Wu L J, Li B W 1993 Phys. Rev. A 47 2701Google Scholar

    [38]

    Rao J G, Liu W Y, Li B W 1994 Phys. Rev. A 50 1916Google Scholar

    [39]

    Qiao H X, Li B W 1999 Phys. Rev. A 60 3134Google Scholar

    [40]

    Wu L J 1996 Phys. Rev. A 53 139Google Scholar

    [41]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70 012506Google Scholar

    [42]

    Zhang Y H, Tang L Y, Zhang X Z, Jiang J, Mitroy J 2012 J. Chem. Phys. 136 174107Google Scholar

    [43]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y, Mitroy J 2012 Chin. Phys. Lett. 29 063101Google Scholar

    [44]

    Tang L Y, Zhang Y H, Zhang X Z, Jiang J, Mitroy J 2012 Phys. Rev. A 86 012505Google Scholar

    [45]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2015 Phys. Rev. A 92 012515Google Scholar

    [46]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Chin. Phys. B 25 103101Google Scholar

    [47]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93 052516Google Scholar

    [48]

    Wu F F, Yang S J, Zhang Y H, Zhang J Y, Qiao H X, Shi T Y, Tang L Y 2018 Phys. Rev. A 98 040501(RGoogle Scholar

    [49]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99 040502(RGoogle Scholar

    [50]

    Zhang Y H, Tang L Y, Shi T Y 2021 Phys. Rev. A 104 042817Google Scholar

    [51]

    Zhang Y H, Tang L Y, Zhang J Y, Shi T Y 2021 Phys. Rev. A 103 032810Google Scholar

    [52]

    Yang S J, Mei X S, Shi T Y, Qiao H X 2017 Phys. Rev. A 95 062505Google Scholar

    [53]

    Fang H, Zhang Y H, Zhang P P, Shi T Y 2023 Phys. Rev. A 108 062818Google Scholar

    [54]

    Fang H, Zhang Y H, Li Y T, Shi T Y 2024 Phys. Rev. A 110 062823Google Scholar

    [55]

    Yang S J, Tang Y B, Zhao Y H, Shi T Y, Qiao H X 2019 Phys. Rev. A 100 042509Google Scholar

    [56]

    Decleva P, Lisini A, Venuti M 1995 Int. J. Quantum Chem. 56 27Google Scholar

    [57]

    Chen M H, Cheng K T, Johnson W R 1993 Phys. Rev. A 47 3692Google Scholar

    [58]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A 108 L051101Google Scholar

    [59]

    Lamb W E, Retherford R C 1947 Phys. Rev. 72 241Google Scholar

    [60]

    Drake G W F, Martin W C 1998 Can. J. Phys. 76 679

    [61]

    Goldman S P 1984 Phys. Rev. A 30 1219Google Scholar

    [62]

    Goldman S P, Drake G W F 2000 Can. J. Phys. 61 052513

    [63]

    Drake G W F, Goldman S P 2000 Can. J. Phys. 77 835Google Scholar

    [64]

    Goldman S P 1994 Phys. Rev. A 50 3039Google Scholar

    [65]

    Zhang Y H, Shen L J, Xiao C M, Zhang J Y, Shi T Y 2020 J. Phys. B 53 135003Google Scholar

    [66]

    Jentschura U D, Mohr P J 2005 Phys. Rev. A 72 012110Google Scholar

    [67]

    Tang Y B, Zhong Z X, Li C B, Qiao H X, Shi T Y 2013 Phys. Rev. A 87 022510Google Scholar

    [68]

    Kabir P K, Salpeter E E 1957 Phys. Rev. 108 1256Google Scholar

    [69]

    Dalgarno A, Stewart A L 1960 Proc. Phys. Soc. A 76 49Google Scholar

    [70]

    Schwartz C 1961 Phys. Rev. 123 1700Google Scholar

    [71]

    Korobov V I, Korobov S V 1999 Phys. Rev. A 59 3394Google Scholar

    [72]

    Korobov V I 2012 Phys. Rev. A 85 042514Google Scholar

    [73]

    Korobov V I 2019 Phys. Rev. A 100 012517Google Scholar

    [74]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90 052508Google Scholar

    [75]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [76]

    Arora B, Sahoo B K 2014 Phys. Rev. A 89 022511Google Scholar

    [77]

    Porsev S G, Safronova M S, Derevianko A, Clark C W 2014 Phys. Rev. A 89 022703Google Scholar

    [78]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [79]

    Puchalski M, Szalewicz K, Lesiuk M, Jeziorski B 2020 Phys. Rev. A 101 022505Google Scholar

    [80]

    Dzuba V A, Flambaum V V, Sushkov O P 1997 Phys. Rev. A 56 R4357Google Scholar

    [81]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B 43 202001Google Scholar

    [82]

    Derevianko A, Savukov I M, Johnson W R, Plante D R 1998 Phys. Rev. A 58 4453Google Scholar

    [83]

    Johnson W, Plante D, Sapirstein J 1995 Adv. At., Mol., Opt. Phys. 35 255

    [84]

    Pachucki K, Komasa J 2004 Phys. Rev. Lett. 92 213001Google Scholar

    [85]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75 053612Google Scholar

    [86]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [87]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100 063603Google Scholar

    [88]

    Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [89]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115 043004Google Scholar

    [90]

    Lu S S, Zhang Y H, Shi T Y, Tang L Y 2025 J. Phys. B 58 035002Google Scholar

    [91]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [92]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001Google Scholar

    [93]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [94]

    Zheng X, Dolde J, Lochab V, Merriman B N, Li H, Kolkowitz 2022 Nature 602 425Google Scholar

    [95]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [96]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [97]

    van der Werf Y, Steinebach K, Jannin R, Bethlem H L, Eikema K S E 2023 arXiv: 2306.02333v1

    [98]

    Thomas K F, Ross J A, Henson B M, Shin D K, Baldwin K G H, Hodgman S S, Truscott A G 2020 Phys. Rev. Lett. 125 013002Google Scholar

  • 图 1  基于B-样条函数的多种高精度理论方法框架图

    Figure 1.  Framework diagram of various high-precision theoretical methods based on B-spline functions

    图 2  在$ [0, 1000] $区间内, 10个7阶均匀分布型的B-样条函数

    Figure 2.  Ten 7th-order uniformly distributed B-spline functions within the interval $ [0, 1000] $

    图 3  在$ [0, 1000] $区间内, 10个7阶指数分布型的B-样条函数

    Figure 3.  Ten 7th-order exponentially distributed B-spline functions within the interval $ [0, 1000] $

    图 4  幻零波长$ \lambda_{\mathrm{t}} $和魔幻波长$ \lambda_{\mathrm{m}} $的示意图

    Figure 4.  Schematic diagram of tune-out wavelength $ \lambda_{\mathrm{t}} $ and magic wavelength $ \lambda_{\mathrm{m}} $

    图 5  氦原子亚稳态413 nm幻零波长的位置

    Figure 5.  The position of the 413 nm tune-out wavelength for the metastable state of helium

    图 6  氦原子413 nm幻零波长的研究历程

    Figure 6.  Research roadmap of the 413 nm tune-out wavelength for the metastable state of helium

    图 7  氦原子亚稳态413 nm幻零波长的各项修正计算[49]

    Figure 7.  Contributions of various corrections to the 413 nm tune-out wavelength for the metastable state of helium [49]

    图 8  氦原子$ 2\, ^3 {\mathrm{S}}_1\rightarrow 2\, ^1 {\mathrm{S}}_0 $跃迁下的魔幻波长, 其中绿色圆圈所示的位置是319.8 nm的魔幻波长

    Figure 8.  The magic wavelengths for the transition $ 2\, ^3 {\mathrm{S}}_1\rightarrow $$ 2\, ^1 {\mathrm{S}}_0 $ of helium, where the position indicated by the green circle corresponds to the 319.8 nm magic wavelength.

    图 9  4He原子$ 2\, ^3 {\mathrm{S}}_1\rightarrow 3\, ^3 {\mathrm{S}}_1 $的双光子激发跃迁方案图

    Figure 9.  The two-photon excitation scheme for the $ 2\, ^3 {\mathrm{S}}_1\rightarrow $$ 3\, ^3 {\mathrm{S}}_1 $ transition of 4He.

    表 1  无穷核质量下, 氦原子基态非相对论能量(原子单位)随最大分波数$ \ell_{{\mathrm{max}}}$增加的收敛性检验

    Table 1.  Convergence test for the non-relativistic energy (in a.u.) of ground-state helium with infinite nuclear mass, as the maximum partial wave $ \ell_{{\mathrm{max}}}$ increases.

    $ \ell_{{\mathrm{max}}} $ B-NRCI Method [56] $ \ell_{{\mathrm{max}}} $ C-BSBFs Method [52]
    60 –2.903724240750 1 –2.9037242683
    65 –2.903724262547 2 –2.90372437687
    70 –2.903724278413 3 –2.90372437696
    75 –2.903724290199 4 –2.903724376999
    80 –2.903724299061
    Ref. [13] –2.90372437703411960
    DownLoad: CSV

    表 2  加速度规范下, 氢原子基态贝特对数项$\beta(1 {\mathrm{s}})$(原子单位)随指数结点参数$\gamma_0$的变化. 其中, $t_1$为第一个非零结点, $E_{{\mathrm{max}}}$为中间态的最大能量值. 在计算过程中, 样条个数$N=300$, 样条阶数$k=15$, 盒子半径$R_0=200$个原子单位

    Table 2.  Values of the Bethe logarithm $\beta(1 {\mathrm{s}})$ (in a.u.) for the ground-state hydrogen in the acceleration gauge, evaluated at different knot sequences. Where $\gamma_0$ denotes the parameter of exponential knot sequences, $t_1$ represents the first interior knot point, and $E_{{\mathrm{max}}}$ indicates the highest energy. All calculations are carried out using the same set of parameters: N = 300, k = 15, and $R_0$=200 a.u.

    $ \gamma_0 $ $ t_1 $ $ E_{{\mathrm{max}}} $ $ \beta(1 {\mathrm{s}}) $
    0.005 4.10×10–1 5.76×103 2.258
    0.025 2.41×10–2 1.59×106 2.2890
    0.035 4.59×10–3 4.32×107 2.29061
    0.045 8.06×10–4 1.38×109 2.290915
    0.065 2.17×10–5 1.83×1013 2.2909796
    0.075 3.43×10–7 7.23×1015 2.29098109
    0.085 5.32×10–7 2.96×1018 2.290981330
    0.105 1.23×10–9 5.38×1020 2.2909813741
    0.115 1.84×10–10 2.36×1022 2.29098137505
    0.125 2.74×10–10 1.05×1023 2.29098137518
    0.135 4.04×10–11 4.75×1023 2.2909813752020
    0.145 5.94×10–12 2.16×1025 2.29098137520502
    0.165 1.26×10–13 4.65×1028 2.290981375205541
    0.175 1.83×10–14 2.17×1030 2.2909813752055506
    0.185 2.65×10–15 1.03×1032 2.29098137520555206
    0.195 3.82×10–16 4.86×1033 2.29098137520555227
    0.205 5.49×10–17 2.32×1035 2.290981375205552296
    0.225 1.13×10–18 5.35×1038 2.29098137520555230124
    0.235 1.60×10–19 6.31×1039 2.2909813752055523013355
    DownLoad: CSV

    表 3  不同方法计算得到的氦原子$n\, ^1 {\mathrm{S}}(n= 1—7)$态贝特对数的比较. 第二列和第三列的第一项数据来自加速度规范, 而第二项数据来自速度-加速度混合规范. 括号中的数字表示计算结果的不确定度

    Table 3.  Comparison of Bethe logarithms for the $n\, ^1 {\mathrm{S}}(n=1-7)$ states of helium obtained from different methods. The first entries in the second and third columns are from the acceleration gauge, while the second entries are from the mixed velocity-acceleration gauge. The Numbers in parentheses represent the computational uncertainties.

    State B-NRCI[65] C-BSBFs[55] Integration method[73]
    $ 1\, ^1 {\mathrm{S}} $ 4.37034(2) 4.37016022(5) 4.3701602230703(3)
    4.37014(2) 4.3701601(1)
    $ 2\, ^1 {\mathrm{S}} $ 4.36643(1) 4.36641271(1) 4.366412726417(1)
    4.366412(1) 4.3664127(1)
    $ 3\, ^1 {\mathrm{S}} $ 4.369170(1) 4.36916480(6) 4.369164860824(2)
    4.3691643(2) 4.3691648(1)
    $ 4\, ^1 {\mathrm{S}} $ 4.369893(1) 4.36989065(5) 4.369890632356(3)
    4.3698903(5) 4.3698906(1)
    $ 5\, ^1 {\mathrm{S }}$ 4.370152(3) 4.3701520(1) 4.370151796310(4)
    4.3701511(2) 4.3701519(1)
    $ 6\, ^1 {\mathrm{S }}$ 4.37027(1) 4.370267(1) 4.370266974319(5)
    4.370266(2) 4.370267(1)
    $ 7\, ^1{\mathrm{ S}} $ 4.37033(1) 4.370326(1) 4.370325261772(5)
    4.37033(1) 4.370326(1)
    DownLoad: CSV

    表 4  氦-4原子基态静电偶极极化率(原子单位)的结果比较. “NR”表示非相对论极化率, “Rel.”表示相对论极化率, “Total”表示考虑QED修正后的最终极化率. 括号中的数字表示计算结果的不确定度

    Table 4.  Comparison of the static dipole polarizability $\alpha_1(0)$ (in a.u.) for the ground state of 4He. “NR” denotes the non-relativistic polarizability, “Rel.” represents the relativistic polarizability, and “Total” stands for the final polarizability including QED corrections. The numbers in parentheses indicate the computational uncertainties.

    C-BSBFs [54] Ref. [78]
    NR 1.383809986408(2) 1.383809986408(1)
    Rel. 1.38372953306(7) 1.3837295330(1)
    Total 1.38376080(24) 1.38376077(14)
    DownLoad: CSV

    表 5  关联B-样条基组方法计算的氦-4原子$n\, ^1 {\mathrm{S}}_0(n=2—7)$和$n\, ^3 {\mathrm{S}}_1(n=2—7)$激发态的静电偶极极化率(原子单位). 对于$n\, ^3 {\mathrm{S}}_1$态的张量极化率, 斜杠前的数值对应于$n\, ^3 {\mathrm{P}}_{0, 1, 2}$中间态的贡献, 斜杠后的数值对应于$n\, ^3 {\mathrm{D}}_1$中间态的贡献. 括号中的数字为计算结果的不确定度

    Table 5.  Static dipole polarizabilities (in a.u.) calculated using the correlated B-spline basis sets for the excited $n\, ^1 {\mathrm{S}}_0(n=2-7)$ and $n\, ^3 {\mathrm{S}}_1(n=2-7)$ states of $^4$He. For the tensor polarizability of the $n\, ^3 {\mathrm{S}}_1$ states, the number before the slash corresponds to the contribution from the $n\, ^3{\mathrm{ P}}_J$ intermediate states, and the number after the slash corresponds to the contribution from the $n\, ^3 {\mathrm{D}}_1$ intermediate states. Numbers in parentheses represent computational uncertainties

    n $ \alpha_1(n\, ^1 {\mathrm{S}}_0) $ $ \alpha_1^{\mathrm{S}}(n\, ^3 {\mathrm{S}}_1) $ $ \alpha_1^{\mathrm{T}}(n\, ^3 {\mathrm{S}}_1) $
    2 800.52195(14) 315.728536(48) 0.002764488(2)/0.000726892(6)
    3 16890.5275(28) 7940.5494(13) 0.09715509(3)/–0.005470(2)
    4 135875.295(23) 68677.988(11) 0.9558(3)/–0.1189(2)
    5 669694.55(11) 351945.328(60) 5.2676(2)/–0.7829(3)
    6 2443625.15(40) 1315529.52(23) 20.654(3)/–3.291(2)
    7 7269026.8(1.2) 3977532.95(69) 64.62(3)/–10.65(3)
    DownLoad: CSV

    表 6  在激光偏振与量子轴夹角不同的情形下, 氦原子413 nm幻零波长(纳米单位)的结果比对. 第三列代表偏振方向与量子轴平行, 且初态磁量子数$M_J=0$时的情况; 第四列代表偏振方向与量子轴平行, 且初态磁量子数为$M_J=\pm 1$时的情况; 第五列代表偏振方向与量子轴垂直, 且初态量子数$M_J=\pm 1$时的情况

    Table 6.  Comparison of the 413 nm tune-out wavelength (in nm) for the $2\, ^3 {\mathrm{S}}_1$ state of 4He, with varying the initial magnetic quantum number$M_J$ values, under different angles between laser polarization and the quantization axis. The third column represents the case where the polarization direction is parallel to the quantization axis and $M_J=0$. The fourth column represents the case where the polarization direction is parallel to the quantization axis but with $M_J=\pm 1$. The fifth column represents the case where the polarization direction is perpendicular to the quantization axis, with $M_J=\pm 1$.

    Reference Method $ \alpha_1^{\mathrm{S}}(\omega)-2\alpha_1^{\mathrm{T}}(\omega) $ $ \alpha_1^{\mathrm{S}}(\omega)+\alpha_1^{\mathrm{T}}(\omega) $ $ \alpha_1^{\mathrm{S}}(\omega)-\tfrac{1}{2}\alpha_1^{\mathrm{T}}(\omega) $
    Ref. [6] Hybrid model 413.02(9)
    Ref. [89] Expt. 413.0938(9stat)(20syst)
    Ref. [47] RCI 413.080 1(4) 413.085 9(4)
    Ref. [49] RCI+NRQED 413.084 26(4) 413.090 15(4)
    Ref. [15] Expt. 413.087 08(15)
    Ref. [15] NRQED 413.087 179(6)
    Ref. [90] RCIRP 413.084 28(5) 413.090 17(3) 413.087 23(3)
    DownLoad: CSV

    表 7  氦原子$2\, ^3{\mathrm{ S}}\rightarrow 2\, ^1 {\mathrm{S}}$双禁戒跃迁下319.8 nm魔幻波长理论与实验的对比

    Table 7.  Comparison of the 319.8 nm magic wavelength between theory and experiment for the doubly forbidden transition $2\, ^3 {\mathrm{S}}\rightarrow 2\, ^1 {\mathrm{S}}$ of helium.

    Isotopes Theory Experiment
    4He 319.8153(6) nm [48] 319.81592(15)nm [96]
    3He 319.8302(7) nm [48] 319.83080(15)nm [97]
    DownLoad: CSV
    Baidu
  • [1]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [2]

    Patkóš V, Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94 052508Google Scholar

    [3]

    Patkóš V, Yerokhin V A, Pachucki K 2017 Phys. Rev. A 95 012508Google Scholar

    [4]

    Patkóš V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510Google Scholar

    [5]

    Patkóš V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 012803Google Scholar

    [6]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [7]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [8]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [9]

    Drake G W F, Dhindsa H S, Marton V J 2021 Phys. Rev. A 104 L060801Google Scholar

    [10]

    Bethe H A 1947 Phys. Rev. 72 339Google Scholar

    [11]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [12]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar

    [13]

    Drake G W F 2023 Handbook of Atomic, Molecular and Optical Physics (Cham: Springer Nature Switzerland AG 2023) pp2522–8706

    [14]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [15]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [16]

    James H M, Coolidge A S 1935 Phys. Rev. 47 700

    [17]

    Mitroy J, Bubin S, Horiuchi W, Suzuki Y, Adamowicz L, Cencek W, Szalewicz K, Komasa J, Blume D, Varga K 2013 Rev. Mod. Phys. 85 693Google Scholar

    [18]

    McKenzie D M, Drake G W F 1991 Phys. Rev. A 44 R6973Google Scholar

    [19]

    Drake G W F, Yan Z C 1992 Phys. Rev. A 46 2378Google Scholar

    [20]

    Yan Z C, Drake G W F 1995 Phys. Rev. A 52 3711Google Scholar

    [21]

    Yan Z, Drake G W F 1997 J. Phys. B 30 4723Google Scholar

    [22]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [23]

    Rooij R V, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [24]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [25]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121 143002Google Scholar

    [26]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801Google Scholar

    [27]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [28]

    Schoenberg I J 1946 Quart. Appl. Math. 4 45Google Scholar

    [29]

    Schoenberg I J 1967 On Spline Functions//Shisha O Inequalities (New York: Academic Press) pp255–291

    [30]

    De Boor C 1978 A Practical Guide to Splines (New York: Springer) p157

    [31]

    Johnson W R, Sapirstein J 1986 Phys. Rev. Lett. 57 1126Google Scholar

    [32]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 307Google Scholar

    [33]

    Grant I P 1982 Phys. Rev. A 25 1230Google Scholar

    [34]

    Fischer C F 2008 Adv. At. Mol. Opt. Phys. 55 235

    [35]

    Bachau H, Cormier E, Decleva P, Hansen J E, Martín F 2001 Rep. Prog. Phys. 64 1815Google Scholar

    [36]

    Xi J H, He X H, Li B W 1992 Phys. Rev. A 46 5806Google Scholar

    [37]

    Xi J H, Wu L J, Li B W 1993 Phys. Rev. A 47 2701Google Scholar

    [38]

    Rao J G, Liu W Y, Li B W 1994 Phys. Rev. A 50 1916Google Scholar

    [39]

    Qiao H X, Li B W 1999 Phys. Rev. A 60 3134Google Scholar

    [40]

    Wu L J 1996 Phys. Rev. A 53 139Google Scholar

    [41]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70 012506Google Scholar

    [42]

    Zhang Y H, Tang L Y, Zhang X Z, Jiang J, Mitroy J 2012 J. Chem. Phys. 136 174107Google Scholar

    [43]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y, Mitroy J 2012 Chin. Phys. Lett. 29 063101Google Scholar

    [44]

    Tang L Y, Zhang Y H, Zhang X Z, Jiang J, Mitroy J 2012 Phys. Rev. A 86 012505Google Scholar

    [45]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2015 Phys. Rev. A 92 012515Google Scholar

    [46]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Chin. Phys. B 25 103101Google Scholar

    [47]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93 052516Google Scholar

    [48]

    Wu F F, Yang S J, Zhang Y H, Zhang J Y, Qiao H X, Shi T Y, Tang L Y 2018 Phys. Rev. A 98 040501(RGoogle Scholar

    [49]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99 040502(RGoogle Scholar

    [50]

    Zhang Y H, Tang L Y, Shi T Y 2021 Phys. Rev. A 104 042817Google Scholar

    [51]

    Zhang Y H, Tang L Y, Zhang J Y, Shi T Y 2021 Phys. Rev. A 103 032810Google Scholar

    [52]

    Yang S J, Mei X S, Shi T Y, Qiao H X 2017 Phys. Rev. A 95 062505Google Scholar

    [53]

    Fang H, Zhang Y H, Zhang P P, Shi T Y 2023 Phys. Rev. A 108 062818Google Scholar

    [54]

    Fang H, Zhang Y H, Li Y T, Shi T Y 2024 Phys. Rev. A 110 062823Google Scholar

    [55]

    Yang S J, Tang Y B, Zhao Y H, Shi T Y, Qiao H X 2019 Phys. Rev. A 100 042509Google Scholar

    [56]

    Decleva P, Lisini A, Venuti M 1995 Int. J. Quantum Chem. 56 27Google Scholar

    [57]

    Chen M H, Cheng K T, Johnson W R 1993 Phys. Rev. A 47 3692Google Scholar

    [58]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A 108 L051101Google Scholar

    [59]

    Lamb W E, Retherford R C 1947 Phys. Rev. 72 241Google Scholar

    [60]

    Drake G W F, Martin W C 1998 Can. J. Phys. 76 679

    [61]

    Goldman S P 1984 Phys. Rev. A 30 1219Google Scholar

    [62]

    Goldman S P, Drake G W F 2000 Can. J. Phys. 61 052513

    [63]

    Drake G W F, Goldman S P 2000 Can. J. Phys. 77 835Google Scholar

    [64]

    Goldman S P 1994 Phys. Rev. A 50 3039Google Scholar

    [65]

    Zhang Y H, Shen L J, Xiao C M, Zhang J Y, Shi T Y 2020 J. Phys. B 53 135003Google Scholar

    [66]

    Jentschura U D, Mohr P J 2005 Phys. Rev. A 72 012110Google Scholar

    [67]

    Tang Y B, Zhong Z X, Li C B, Qiao H X, Shi T Y 2013 Phys. Rev. A 87 022510Google Scholar

    [68]

    Kabir P K, Salpeter E E 1957 Phys. Rev. 108 1256Google Scholar

    [69]

    Dalgarno A, Stewart A L 1960 Proc. Phys. Soc. A 76 49Google Scholar

    [70]

    Schwartz C 1961 Phys. Rev. 123 1700Google Scholar

    [71]

    Korobov V I, Korobov S V 1999 Phys. Rev. A 59 3394Google Scholar

    [72]

    Korobov V I 2012 Phys. Rev. A 85 042514Google Scholar

    [73]

    Korobov V I 2019 Phys. Rev. A 100 012517Google Scholar

    [74]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90 052508Google Scholar

    [75]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [76]

    Arora B, Sahoo B K 2014 Phys. Rev. A 89 022511Google Scholar

    [77]

    Porsev S G, Safronova M S, Derevianko A, Clark C W 2014 Phys. Rev. A 89 022703Google Scholar

    [78]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [79]

    Puchalski M, Szalewicz K, Lesiuk M, Jeziorski B 2020 Phys. Rev. A 101 022505Google Scholar

    [80]

    Dzuba V A, Flambaum V V, Sushkov O P 1997 Phys. Rev. A 56 R4357Google Scholar

    [81]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B 43 202001Google Scholar

    [82]

    Derevianko A, Savukov I M, Johnson W R, Plante D R 1998 Phys. Rev. A 58 4453Google Scholar

    [83]

    Johnson W, Plante D, Sapirstein J 1995 Adv. At., Mol., Opt. Phys. 35 255

    [84]

    Pachucki K, Komasa J 2004 Phys. Rev. Lett. 92 213001Google Scholar

    [85]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75 053612Google Scholar

    [86]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [87]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100 063603Google Scholar

    [88]

    Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [89]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115 043004Google Scholar

    [90]

    Lu S S, Zhang Y H, Shi T Y, Tang L Y 2025 J. Phys. B 58 035002Google Scholar

    [91]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [92]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001Google Scholar

    [93]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [94]

    Zheng X, Dolde J, Lochab V, Merriman B N, Li H, Kolkowitz 2022 Nature 602 425Google Scholar

    [95]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [96]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [97]

    van der Werf Y, Steinebach K, Jannin R, Bethlem H L, Eikema K S E 2023 arXiv: 2306.02333v1

    [98]

    Thomas K F, Ross J A, Henson B M, Shin D K, Baldwin K G H, Hodgman S S, Truscott A G 2020 Phys. Rev. Lett. 125 013002Google Scholar

  • [1] Preface to the special topic: Precision spectroscopy of few-electron atoms and molecules. Acta Physica Sinica, 2024, 73(20): 200101. doi: 10.7498/aps.73.200101
    [2] Wei Yuan-Fei, Tang Zhi-Ming, Li Cheng-Bin, Huang Xue-Ren. Theoretical calculation of “tune-out” wavelengths for clock states of Al+. Acta Physica Sinica, 2024, 73(10): 103103. doi: 10.7498/aps.73.20240177
    [3] Xiao Zheng-Rong, Zhang Heng-Zhi, Hua Lin-Qiang, Tang Li-Yan, Liu Xiao-Jun. Precision spectroscopic measurements of few-electron atomic systems in extreme ultraviolet region. Acta Physica Sinica, 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [4] Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong. Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions. Acta Physica Sinica, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [5] Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun. Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms. Acta Physica Sinica, 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [6] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [7] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [8] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] Xu Sheng-Nan, Liu Tian-Yuan, Sun Mei-Jiao, Li Shuo, Fang Wen-Hui, Sun Cheng-Lin, Li Zuo-Wei. Solvent effects on the electron-vibration coupling constant of β-carotene. Acta Physica Sinica, 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [10] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun. Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [11] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [12] Yao Jian-Ming, Yang Chong. Spin-dependent transport through a multi-electrodes controlled by an Aharonov-Bohm ring. Acta Physica Sinica, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [13] He Yong-Lin, Zhou Xiao-Xin, Li Xiao-Yong. Study of Rydberg states of lithium in a static electric field using B-spline functions. Acta Physica Sinica, 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [14] Zhang Yun-Dong, Sun Xu-Tao, He Zhu-Song. Theoretical model of laser-induced dispersion optical filter. Acta Physica Sinica, 2005, 54(7): 3000-3004. doi: 10.7498/aps.54.3000
    [15] Ma Xiao-Guang, Sun Wei-Guo, Cheng Yan-Song. A new expression for photoionization cross sections and its application in high density system. Acta Physica Sinica, 2005, 54(3): 1149-1155. doi: 10.7498/aps.54.1149
    [16] Han Ding-An, Guo Hong, Sun Hui, Bai Yan-Feng. The frequency modulation effects of the probe field in three level Λ-system. Acta Physica Sinica, 2004, 53(6): 1793-1798. doi: 10.7498/aps.53.1793
    [17] Cai Li, Ma Xi-Kui, Wang Sen. Study of hyperchaotic behavior in quantum cellular neural networks. Acta Physica Sinica, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [18] FU RONG-TANG, LI LIE-MING, SUN XIN, FU ROU-LI. ELECTRON-PHONON INTERACTION AND NONLINEAR OPTICAL SUSCEPTIBILITY OF POLYMER. Acta Physica Sinica, 1993, 42(3): 422-430. doi: 10.7498/aps.42.422
    [19] SHEN SAN-GUO, FAN XI-QING. ELECTRONIC STRUCTURE OF BORON-VACANCY COMPLEX IN SILICON. Acta Physica Sinica, 1991, 40(4): 616-624. doi: 10.7498/aps.40.616
    [20] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU. POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
Metrics
  • Abstract views:  404
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2024
  • Accepted Date:  07 February 2025
  • Available Online:  21 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回
Baidu
map