Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Boundary Effect of s Quark Matter and Self-similarity Structure Influence of K Meson on QGP–hadron Phase Transition

Dai Ting-Ting Cheng Luan Ding Hui-Qiang Zhang Wei-Ning Wang En-Ke

Citation:

The Boundary Effect of s Quark Matter and Self-similarity Structure Influence of K Meson on QGP–hadron Phase Transition

Dai Ting-Ting, Cheng Luan, Ding Hui-Qiang, Zhang Wei-Ning, Wang En-Ke
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • We investigate the boundary effect of small-scale $ \text{s} $ quark matter, and the self-similarity structure influence of strange hadrons in the hadron gas on QGP–hadron phase transition. In this study, the multiple reflection expansion method is employed to investigate the boundary effect of QGP droplets containing $ \text{s} $ quarks. The calculation reveals that under the influence of boundary effect, small-scale $ \text{s} $ quark matter exhibits lower energy density, entropy density, and pressure. In hadron phase, there is the two-body self-similarity structure between $ \text{K} $ meson and neighboring π mesons under the influence of collective flow, quantum correlations, and strong interactions. By applying Two-Body Fractal Model to study the self-similarity structure of the $ \text{K} $ meson in meson and quark aspect, it is found that the self-similarity structure of the $ \text{K} $ meson exists in hadron phase, leading to an increase in the energy density, entropy density, and pressure of the $ \text{K} $ meson. With the influence of self-similarity structure, it is found that the derived transverse momentum spectrum of $ \text{K} $ meson has a good agreement with experimental data (Fig. (a)). This study predicts that in the HIAF energy region, the self-similarity structure factor of $ \text{K} $ meson $ q_{1} $ approaches $ 1.042 $. Under the influence of boundary effect and self-similarity structure of $ \text{K} $ and π mesons, it shows that the phase transition temperature of $ \text{s} $ quark matter increases (Fig. (b)). And if the boundary of $ \text{s} $ quark matter curves more, the increase of phase transition temperature becomes more pronounced compared to the influence of self-similarity structure.
  • 图 1  QGP热滴的势场示意图

    Figure 1.  The potential field of QGP droplet.

    图 2  QGP热滴半径分别为$ r = 1, \, 1.5, \, 6\text{ fm} $的(a1)−(a3)能量密度; (b1)−(b3)熵密度; (c1)−(c3)压强

    Figure 2.  (a1)−(a3) Energy density; (b1)−(b3) entropy density and (c1)−(c3) pressure of QGP droplets with radius $ r = 1, \, 1.5, \, 6\text{ fm} $ respectively.

    图 3  半径为$ r = 1\text{ fm} $的QGP热滴, 包含$ \text{s} $, $ \text{u} $, $ \text{d} $三种夸克, 和包含 $ \text{u} $, $ \text{d} $两种夸克的热力学量 (a)能量密度; (b)压强; (c)熵密度

    Figure 3.  Thermodynamic quantities of QGP droplet $ r = 1\text{ fm} $ considering $ \text{s} $, $ \text{u} $, $ \text{d} $ quarks and $ \text{u} $, $ \text{d} $ quarks in it respectively: (a) Energy density; (b) pressure; (c) entropy density.

    图 4  (a) 介子层次和(b) 夸克层次下, 介子与介子-介子之间的自相似结构

    Figure 4.  Self-similarity structure of a meson and a resonant state in (a) meson aspect and (b) quark aspect.

    图 5  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 39\text{ GeV} $中临界温度附近的两体自相似结构影响因子$ q_{1} $的变化

    Figure 5.  The relationship between the factor $ q_{1} $ and the temperature T near to the critical temperature in Au+Au collision at $ \sqrt{s_{\text{NN}}} = 39\, \text{GeV} $.

    图 6  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, $$ 39\text{ GeV} $, 0−5%对心度下, $ \text{K} $介子的自相似结构影响的修正因子$ q_{1} $和化学势的变化关系图

    Figure 6.  The relationship between the factor $ q_{1} $ for $ \text{K} $ meson and chemical potential μ in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, \, 39\text{ GeV} $ for 0−5% centrality.

    图 7  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 19.6, \, 39\text{ GeV} $中, 受自相似结构影响的$ \text{K} $介子的热力学量在临界相变温度时的变化: (a)能量密度; (b)压强; (c)熵密度

    Figure 7.  Thermodynamic quantities of kaon with and without the self-similarity structure influence in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 39, \, 19.6 \, \text{GeV} $ near the phase transition temperature: (a) energy density; (b) pressure; (c) entropy density.

    图 8  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \; 27, $$ 39\text{ GeV} $, $ 0-5\% $对心度, $ |y| < 0.1 $下, $ \text{K} $介子受自相似结构影响下$ (\text{K}^{+}+\text{K}^{-})/2 $的横动量谱分布. 与之比对的实验数据来自STAR实验组[63]

    Figure 8.  Transverse momentum spectrum of $ (\text{K}^{+}+\text{K}^{-})/2 $ mesons in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6,\; 27, $$ 39\text{ GeV} $ for $ 0-5\% $ centrality, in mid-rapidity $ |y| < 0.1 $. The experimental data are from STAR[63].

    图 9  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 39\text{ GeV} $中, QGP热滴半径分别为$ r = 1, \, 1.5, \, 6\text{ fm} $的压强随温度的变化, 以及分别考虑强子气体为理想气体和受$ \text{K}, \pi $介子自相似结构影响的压强随温度的变化

    Figure 9.  The pressure in hadron phase with and without the influence of self-similarity structure on $ \text{K} $ and πmesons in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 39 \text{ GeV} $, and the pressure of QGP droplets at radius $ r = 1, \, 1.5, \, 6\text{ fm} $ as a function of temperature T.

    图 10  不同情况下的相图结果: (1) QGP相处于热力学极限(TL), 强子气体(HG)为理想气体(IHG); (2)QGP相处于热力学极限(TL), 强子气体受自相似结构影响; (3)(4)(5)QGP热滴半径分别为$ r = 1 \text{ fm}, 1.5 \text{ fm}, 6\text{ fm} $受边界效应(BE)影响, 强子气体为理想气体; (6)QGP热滴半径为$ r = 1 \text{ fm} $受边界效应影响, 强子气体受自相似结构影响. 我们也列出了泛函重整化群(fRG)方法[64], Dyson-Schwinger方程模型[65,66]和格点QCD[42,43]在有限化学势区域的相图结果, 以便比较

    Figure 10.  The phase diagram with considering (1) QGP in thermodynamic limit (TL) and ideal hadron gas (IHG). (2) QGP in thermodynamic limit and hadron gas (HG) with the influence of self-similarity structure (SSS). (3)(4)(5) QGP droplet with the boundary effect (BE) at radius $ r = 1 \text{ fm}, 1.5 \text{ fm}, 6\text{ fm} $ and ideal hadron gas(IHG) respectively. (6) QGP droplet with the boundary effect (BE) at radius $ r = 1 \text{ fm} $ and hadron gas with the influence of self-similarity structure (SSS). We also list the results from fRG model[64], DSE[65,66] and lattice QCD[42,43] for comparison.

    表 1  Au+Au碰撞能量$ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, \, 39\text{ GeV} $, 0−5%对心度下, 通过TBFM方法求解出$ \text{K} $介子的自相似结构影响修正因子$ q_{1} $ 和 $ q_{2} $.

    Table 1.  The factors $ q_{1} $ and $ q_{2} $ for $ \text{K} $ meson in Au+Au collisions at $ \sqrt{s_{\text{NN}}} = 7.7, \, 11.5, \, 19.6, \, 27, \, 39 \text{ GeV} $ for 0−5% centrality solved by TBFM.

    $ \sqrt{s_{\text{NN}}}/\text{GeV} $ $ T / \text{GeV} $ $ \mu_{\text{B}} / \text{GeV} $ $ r_{\text{min}}/\text{fm} $ $ r_{0}/\text{fm} $ $ q_{1} $ $ q_{2} $
    7.7 0.1424 $ \pm $ 0.00137 0.42 0.11 6.3 1.04222 $ \pm $ 0.003525 1.13941 $ \pm $ 0.010415
    11.5 0.1483 $ \pm $ 0.00142 0.316 0.11 6.5 1.04204 $ \pm $ 0.004635 1.12682 $ \pm $ 0.01063
    19.6 0.1527 $ \pm $ 0.00147 0.206 0.09 6.75 1.04129 $ \pm $ 0.002445 1.14432 $ \pm $ 0.005105
    27 0.1541 $ \pm $ 0.00148 0.156 0.1 6.8 1.04470 $ \pm $ 0.001435 1.12251 $ \pm $ 0.00039
    39 0.155 $ \pm $ 0.00149 0.112 0.1 6.85 1.04710 $ \pm $ 0.001615 1.11388 $ \pm $ 0.00012
    DownLoad: CSV
    Baidu
  • [1]

    Srivastava P K, Tiwari S K, Singh C P 2010 Phys. Rev. D 82 014023Google Scholar

    [2]

    Singh C 1993 Phys. Rep. 236 147Google Scholar

    [3]

    Satz H 2000 Rep. Prog. Phys. 63 1511Google Scholar

    [4]

    Back B, Baker M, Ballintijn M, et al 2005 Nucl. Phys. A 757 28Google Scholar

    [5]

    STAR Collaboration 2005 Nucl. Phys. A 757 102Google Scholar

    [6]

    Arsene I, Bearden I, Beavis D, et al 2005 Nucl. Phys. A 757 1Google Scholar

    [7]

    Karthein J M, Mroczek D, Acuna A R N, et al 2021 Eur. Phys. J. Plus 136 621Google Scholar

    [8]

    Mohanty B 2009 Nucl. Phys. A 830 899cGoogle Scholar

    [9]

    An X, Bluhm M, Du L, et al 2022 Nucl. Phys. A 1017 122343Google Scholar

    [10]

    Odyniec G 2019 PoS CORFU2018 201 151

    [11]

    Bzdak A, Esumi S, Koch V, otehrs 2020 Phys. Rep. 853 1Google Scholar

    [12]

    Dai T, Ding H, Cheng L, Zhang W, Wang E 2024 arXiv: 2411.068219

    [13]

    Deur A, Brodsky S J, de Téramond G F 2016 Prog. Part. Nucl. Phys. 90 1Google Scholar

    [14]

    Niida T, Miake Y 2021 AAPPS Bull. 31 12Google Scholar

    [15]

    Raghunath S 2019 AAPPS Bull. 29 16

    [16]

    Loizides C 2016 Nucl. Phys. A 956 200Google Scholar

    [17]

    Shneider M N, Pekker M 2019 arXiv: 1901.04329

    [18]

    Wong C Y, Zhang W N 2007 Int. J. Mod. Phys. E 16 3271Google Scholar

    [19]

    Gustafsson H A, Gutbrod H H, Kolb B, et al 1984 Phys. Rev. Lett. 52 1590Google Scholar

    [20]

    Danielewicz P, Odyniec G 1985 Phys. Lett. B 157 146Google Scholar

    [21]

    Wiranata A, Koch V, Prakash M, Wang X N 2014 J. Phys.: Conf. Ser. 509 012049Google Scholar

    [22]

    Zachariasen F, Zemach C 1962 Phys. Rev. 128 849Google Scholar

    [23]

    Rafelski J 1982 Phys. Rep 88 331

    [24]

    Koch P, Müller B, Rafelski J 1986 Phys. Rep. 142 167Google Scholar

    [25]

    Greiner C, Koch P, Stöcker H 1987 Phys. Rev. Lett. 58 1825Google Scholar

    [26]

    Greiner C, Rischke D H, Stöcker H, Koch P 1988 Phys. Rev. D 38 2797Google Scholar

    [27]

    Greiner C, Stöcker H 1991 Phys. Rev. D 44 3517Google Scholar

    [28]

    Mønster D 1996 Strangelets: Effects of Finite Size and Exact Color Singletness. Ph.D. Dissertation, Aarhus University, Aarhus, Denmark

    [29]

    Nordin F 2011 Quark-Gluon-Plasma at Brookhaven and CERN. Bachelor thesis, Lund University, Lund, Sweden

    [30]

    STAR Collaboration 2020 Phys. Rev. C 102 034909Google Scholar

    [31]

    Moreau P, Soloveva O, Oliva L, Song T, Cassing W, Bratkovskaya E 2019 Phys. Rev. C 100 014911Google Scholar

    [32]

    Shen C, Alzhrani S 2020 Phys. Rev. C 102 014909Google Scholar

    [33]

    Albacete J L, Guerrero-Rodríguez P, Marquet C 2019 J. High Energy Phys. 2019 73

    [34]

    Grönqvist H 2016 Fluctuations in High-Energy Particle Collisions. Theses, Université Paris Saclay (COmUE

    [35]

    Chodos A, Jaffe R L, Johnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [36]

    Ramanathan R, Gupta K K, Jha A K, Singh S S 2007 Pramana 68 757Google Scholar

    [37]

    Madsen J 1993 Phys. Rev. Lett. 70 391Google Scholar

    [38]

    Madsen J 1994 Phys. Rev. D 50 3328Google Scholar

    [39]

    Balian R, Bloch C 1970 Annals of Physics 60 401Google Scholar

    [40]

    Patra B K, Singh C P 1996 Phys. Rev. D 54 3551Google Scholar

    [41]

    Song G, Enke W, Jiarong L 1992 Phys. Rev. D 46 3211Google Scholar

    [42]

    Bazavov A, Ding H T, Hegde P, et al 2019 Phys. Lett. B 795 15Google Scholar

    [43]

    Bellwied R, Borsányi S, Fodor Z, Günther J, Katz S, Ratti C, Szabo K 2015 Phys. Lett. B 751 559Google Scholar

    [44]

    Hagedorn R 1971 Thermodynamics of strong interactions. Tech. rep., CERN

    [45]

    Wong C Y 2002 Phys. Rev. C 65 034902Google Scholar

    [46]

    Pathria R, Beale P D 2022 Formulation of quantum statistics. Fourth edition edn. (Lodon: Elseviser), pp 117–154

    [47]

    Musakhanov M 2017 EPJ Web Conf. 137 03013Google Scholar

    [48]

    Mandelbrot B B 1967 Science 156 636Google Scholar

    [49]

    Mandelbrot B B 1986 Self-affne fractal sets, I: The basic fractal dimensions (Amsterdam: Elsevier), pp 3–15

    [50]

    Tsallis C 1988 J. Stat. Phys 52 479Google Scholar

    [51]

    Abe S, Okamoto Y 2001 Nonextensive statistical mechanics and its applications, vol. 560 (Berlin: Springer Science & Business Media), pp 5–6

    [52]

    Ding H Q, Dai T T, Cheng L, Zhang W N, Wang E K 2023 Acta Phys. Sin. 72 192501Google Scholar

    [53]

    Ding H, Cheng L, Dai T, Wang E, Zhang W N 2023 Entropy 25 1655Google Scholar

    [54]

    Crater H W, Yoon J H, Wong C Y 2009 Phys. Rev. D 79 264

    [55]

    Tsallis C 2009 Introduction to nonextensive statistical mechanics: approaching a complex world, vol. 1 (New York: Springer), pp 47–129

    [56]

    Ubriaco M R 1999 Phys. Rev. E 60 165Google Scholar

    [57]

    Büyükkiliç F, Demirham D 1993 Phys. Lett. A 181 24Google Scholar

    [58]

    Feng X, Jin L, Riberdy M J 2022 Phys. Rev. Lett. 128 052003Google Scholar

    [59]

    Wang G, Liang J, Draper T, Liu K F, Yang Y B 2021 Phys. Rev. D 104 074502Google Scholar

    [60]

    Rajagopal A, Mendes R, Lenzi E 1998 Phys. Rev. Lett. 80 3907Google Scholar

    [61]

    Wang Q A 2002 Chaos, Solitons Fractals 14 765Google Scholar

    [62]

    Abe S 2001 Phys. Rev. E 63 061105Google Scholar

    [63]

    STAR Collaboration 2017 Phys. Rev. C 96 044904Google Scholar

    [64]

    Fu W J, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101 054032Google Scholar

    [65]

    Gao F, Pawlowski J M 2021 Phys. Lett. B 820 136584Google Scholar

    [66]

    Gunkel P J, Fischer C S 2021 Phys. Rev. D 104 054022Google Scholar

  • [1] Li Yang, Zhang Yan-Hong, Sheng Liang, Zhang Mei, Yao Zhi-Ming, Duan Bao-Jun, Zhao Ji-Zhen, Guo Quan, Yan Wei-Peng, Li Guo-Guang, Hu Jia-Qi, Li Hao-Qing, Li Lang-Lang. Measurement and analysis of neutron spectrum responses of ST401 scintillators with different thickness. Acta Physica Sinica, doi: 10.7498/aps.73.20241198
    [2] Zhou Shu-Ying, Shen Wan-Ping, Mao Hong. Analytical solution of surface tension of quark-hadron phase transition. Acta Physica Sinica, doi: 10.7498/aps.71.20220659
    [3] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, doi: 10.7498/aps.70.20201643
    [4] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, doi: 10.7498/aps.69.20200415
    [5] Yuan Du-Qi. Thermodynamics of trapped finite unitary Fermi gas. Acta Physica Sinica, doi: 10.7498/aps.65.180302
    [6] Li Hong-Yun, Yin Yan-Yan, Wang Qing, Wang Li-Fei. self-similarity of Rydberg hydrogen atom in parallel electric and magnetic fields. Acta Physica Sinica, doi: 10.7498/aps.64.180502
    [7] Yuan Du-Qi. Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap. Acta Physica Sinica, doi: 10.7498/aps.63.170501
    [8] Yang Qin-Nan, Zhang Yan-Hui, Cai Xiang-Ji, Jiang Guo-Hui, Xu Xue-You. Chaotic behaviors and fractal self-similar analysis of particles transport properties in RIKEN mesoscopic devices. Acta Physica Sinica, doi: 10.7498/aps.62.080505
    [9] Shen Yi, Xu Huan-Liang. The evaluation function of weight similarity and its application in community detection in weighted networks. Acta Physica Sinica, doi: 10.7498/aps.59.6022
    [10] Liao Long-Guang, Fu Hong, Fu Xiu-Jun. Self-similar transformation and quasi-unit cell construction of quasi-periodic structure with twelve-fold rotational symmetry. Acta Physica Sinica, doi: 10.7498/aps.58.7088
    [11] Lai Xiao-Ming, Bian Bao-Min, Yang Ling, Yang Juan, Bian Niu, Li Zhen-Hua, He An-Zhi. Self-similarity model of nonsingular perfect gas universe. Acta Physica Sinica, doi: 10.7498/aps.57.7955
    [12] Feng Jie, Xu Wen-Cheng, Liu Wei-Ci, Li Shu-Xian, Liu Song-Hao. High order dispersion effect of Ginzburg-Landau equation and its self-similar analytical solutions. Acta Physica Sinica, doi: 10.7498/aps.57.4978
    [13] Lai Xiang-Jun, Luo Zhi-Quan, Liu Jing-Jing, Liu Hong-Lin. Quark phase transition in supernova and the effect of quark mass on the process. Acta Physica Sinica, doi: 10.7498/aps.57.1535
    [14] Tang Li-Ming, Wang Yan, Wang Dan, Wang Ling-Ling. Effect of boundary conditions on phonon transmission in a dielectric quantum waveguide. Acta Physica Sinica, doi: 10.7498/aps.56.437
    [15] Tong Yong-Zai, Wang Xi-An, Yu Ben-Hai, Hu Xue-Hui. Self-similarity of the electro-optical effects. Acta Physica Sinica, doi: 10.7498/aps.55.6667
    [16] DAI ZI-GAO, LU TAN, PENG QIU-HE. PHASE TRANSITION OF NONSTRANGE-STRANGE QUARK MATTER IN THE INTERIOR OF A NEUTRON STAR. Acta Physica Sinica, doi: 10.7498/aps.42.1210
    [17] WU JIAN-BIN, WANG ZHI-CHENG. JAHN-TELLER EFFECT AND THE STRUCTURAL PHASE TRANSITIONS IN LiNbO3 (I). Acta Physica Sinica, doi: 10.7498/aps.40.1303
    [18] ZHONG XI-HUA, ZHOU YUE-MING, ZHU YA-FEN. A STUDY ON THE SPECTRA OF SELF-SIMILAR TIME INFORMATIONS. Acta Physica Sinica, doi: 10.7498/aps.40.1934
    [19] ZHONG XI-HUA. THE SPECTRAL FUNCTIONS OF SELF-SIMILAR STRUCTURES. Acta Physica Sinica, doi: 10.7498/aps.39.59
    [20] ZHANG MIN, TAO RUI-BAO, ZHOU SHI-XUN. THE SCALING EXPONENTS OF MASS DISTRIBUTION IN INHOMOGENEOUS COMPOSITES WITH SELF- SIMILAR STRUCTURES. Acta Physica Sinica, doi: 10.7498/aps.37.1987
Metrics
  • Abstract views:  401
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  02 January 2025

/

返回文章
返回
Baidu
map