Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ reconstruction of step phase based on orthogonal holograms

HAO Aihua HUANG Jingyan ZHANG Shiji WANG Zhijun WANG Xiaolong

Citation:

In-situ reconstruction of step phase based on orthogonal holograms

HAO Aihua, HUANG Jingyan, ZHANG Shiji, WANG Zhijun, WANG Xiaolong
cstr: 32037.14.aps.74.20241629
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Filtering technology is the key to accurate phase reconstruction in off-axis digital holography. Due to the limitations of resolution of charge coupled device (CCD) and off-axis digital holography itself, the filtering process of the step-phase objects is often accompanied by spectral loss, spectral aliasing and spectral leakage when non-integer periods are intercepted. At present, much research has been done on adaptive filtering in the frequency domain, but the above problems have not been fundamentally solved. In this work, the influence of spatial filtering on the accuracy of step-phase reconstruction is first analyzed theoretically. The analysis shows that even if the size of the filter window is equal to the sampling frequency of the CCD, the reconstructed object cannot retain all the spectral information of the object due to the limitation of the resolution power of the CCD itself. In addition, in the off-axis holographic recording process, considering the interference of zero-order terms and conjugate terms, the actual filter width is usually only 1/24 of the sampling frequency of the CCD, at which the average absolute error of the step is about 10% of the height of the step, the oscillation is relatively severe, and after further smoothing filtering, the details of the object are lost, the edge is blurred, and the tiny structure cannot be resolved. Second, according to the definition of discrete Fourier transform, the one-dimensional Fourier transform of a two-dimensional function integrates only in one direction, while the other dimension remains unchanged. When performing one-dimensional Fourier transform along the direction perpendicular to the holographic interference fringes and performing one-dimensional full-spectrum filtering, the distribution of reconstructed object light waves in the direction parallel to the fringes follows the original distribution, is not affected by the filtering, and has high accuracy. Therefore, by combining the reconstructed light waves obtained from one-dimensional full-spectrum filtering of two orthogonal off-axis holograms, an accurate two-dimensional differential phase can be obtained, which provides a basic guarantee for the accurate phase unwinding of Poisson equation. On this basis, a spectral lossless phase reconstruction algorithm based on orthogonal holography and optical experiment method is proposed. In this paper, the ideal sample simulation, including irregular shapes such as gear, circle, V, diamond, drop, hexagon and pentagram, and the corresponding experiment based on USFA1951 standard plate and silicon wafer are carried out. The AFM-calibrated average step heights of the standard plate and the silicon wafer are 100 nm and 240 nm, respectively. The experimental results show that compared with the currently widely used adaptive filter phase reconstruction, the proposed method naturally avoids spectrum loss, spectrum aliasing and spectrum leakage caused by filtering, the reconstruction accuracy is high, and it is suitable for three-dimensional contour reconstruction of any shape step object, which provides a practical way for reconstructing the high-precision phase of off-axis holography.

    Erratum: In-situ reconstruction of step phase based on orthogonal holograms.  

    HAO Aihua, HUANG Jingyan, ZHANG Shiji, WANG Zhijun, WANG Xiaolong. Erratum: In-situ reconstruction of step phase based on orthogonal holograms. Acta Phys. Sin., doi: 10.7498/aps.74.079901
      Corresponding author: HAO Aihua, haoaihua@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12304329).
    [1]

    Zhang T, Yamaguchi I 1998 Opt. Lett. 23 1221Google Scholar

    [2]

    Li E B, Yao J Q, Yu D Y, Xi J D, Chicharo J 2005 Opt. Lett. 30 189Google Scholar

    [3]

    Atlan M, Gross M, Absil E 2007 Opt. Lett. 32 1456Google Scholar

    [4]

    Takeda M 1990 Industrial Metrology 1 79Google Scholar

    [5]

    Debnath S K, Park Y 2011 Opt. Lett. 36 4677Google Scholar

    [6]

    Li J S, Wang Z, Gao J M, Liu Y, Huang J H 2014 Opt. Eng. 54 031103Google Scholar

    [7]

    He X, Nguyen C V, Pratap M, Zheng Y, Wang Y, Nisbet D R, Williams R J, Rug M, Maier A G, Lee W M 2016 Biomed. Opt. Express 7 3111Google Scholar

    [8]

    Weng J, Li H, Zhang Z, Zhong J 2014 Optik 125 2633Google Scholar

    [9]

    Xiong H, Zhang D 2023 Photonics 10 194Google Scholar

    [10]

    Ma Z, Long J L, Ding Y, Zhang J M, Xi J T, Li Y R, Peng Y Y 2025 Opt. Laser Technol. 181 111807Google Scholar

    [11]

    Matrecano M, Memmolo P, Miccio L, Persano A, Quaranta F, Siciliano P, Ferraro P 2015 Appl. Opt. 54 3428Google Scholar

    [12]

    Hong Y, Shi T, Wang X, Zhang Y, Chen K, Liao G 2017 Opt. Commun. 382 624Google Scholar

    [13]

    Yu H Q, Jia S H, Lin Z H, Gao L M, Zhou X 2023 J. Mod. Opt. 70 77Google Scholar

    [14]

    Wei J, Wu J, Wang C 2024 Sensors 24 5928Google Scholar

    [15]

    Lin Z H, Jia S H, Zhou X, Zhang H J, Wang L N, Li G J, Wang Z 2023 Opt. Lasers Eng. 166 107571Google Scholar

    [16]

    Lin Z H, Jia S H, Wen B, Zhang H J, Yang Z H, Zhou X, Wang L N, Wang Z, Li G J 2024 Opt. Laser Technol. 179 111366Google Scholar

    [17]

    Xiao W, Wang Q, Pan F, Cao R, Wu X, Sun L 2019 Biomed. Opt. Express 10 1613Google Scholar

    [18]

    Sun Q Y, Liu Y W, Chen H, Jiang Z Q 2022 Opt. Continuum 1 475Google Scholar

    [19]

    Kim H W, Cho M, Lee M C 2024 Sensors 24 1950Google Scholar

    [20]

    Cheng Y Y, Wyant J C 1984 Appl. Opt. 23 4539Google Scholar

    [21]

    石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍 2014 63 244201Google Scholar

    Shi B C, Zhu Z Q, Wang X L, Xi S X, Gong L P 2014 Acta Phys. Sin. 63 244201Google Scholar

    [22]

    Ghiglia D C, Pritt M D 1998 Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (New York: Wiley-Interscience

    [23]

    Girshovitz P, Shaked N T 2014 Opt. Lett. 39 2262Google Scholar

    [24]

    Girshovitz P, Shaked N T 2015 Opt. Express 23 8773Google Scholar

  • 图 1  不同占空比下的平均绝对误差随(a)旁瓣数和(b)空间频率的变化

    Figure 1.  Variation of average absolute error with (a) the number of side lobes and (b) the spatial frequency at different duty cycles.

    图 2  正交全息记录光路(He-Ne为氦氖激光器, SF为空间滤波器, L1和L2为透镜, BS为5∶5分光棱镜, MO1和MO2为显微物镜, CCD为电荷耦合器件, 返回光束用蓝色表示)

    Figure 2.  Optical configuration for recording two orthogonal holograms. He-Ne represents helium-neon laser, SF represents spatial filter, L1 and L2 represent lens, BS represents 5∶5 beam splitter, MO1 and MO2 represent microscope objective, CCD represents charge-coupled device, the return light is shown in blue.

    图 3  基于两个正交全息图的频谱无损相位重建算法, 其中右边一列的图形对应条纹平行于Y方向的全息图的分步运算结果, 最后一个图为二维相位解缠绕的结果

    Figure 3.  Phase reconstruction algorithm without spectral losses based on two orthogonal holograms. The images in the right column correspond to the results for the Y-hologram at each step and the last image shows the two-dimensional unwrapped phase.

    图 4  不规则图形重建结果 (a) RRFM方法重建的相位; (b)图(a)中白色虚线位置处的剖面线; (c) SLPR方法重建的相位; (d), (e)图(c)中红线和黑线位置对应的轮廓线

    Figure 4.  Results of irregular image reconstruction: (a) The reconstructed phase image by FFRM; (b) the section line at white dashed line in panel (a); (c) the reconstructed phase image by SLPR; (d), (e) the profile lines at the position indicated by the red and black lines in panel (c).

    图 5  硅片相位重建 (a) RRFM方法重建的相位; (b) SLPR方法重建的相位; (c)图(b)中值滤波后的结果; (d)图(c)中白色虚线位置的轮廓图

    Figure 5.  Results of wafer phase reconstruction: (a) The phase image reconstructed by RRFM; (b) the phase image reconstructed by SLPR; (c) the output of median filtering in panel (b); (d) the profile map at white dashed line in panel (c).

    图 6  USAF1951标准板相位重建 (a), (b) SLPR和RRFM方法的重建相位图; (c)图(a), (b)中相同位置的轮廓线, 分别对应图中洋红和蓝色线条位置; (d)图(c)中第1个台阶的放大图

    Figure 6.  Phase reconstruction of USAF1951 target: (a), (b) The reconstructed phase images by SLPR and RRFM; (c) the profile lines at the position indicated by the magenta line in panel (a) and blue line in panel (b); (d) the enlarged view of the first step in panel (c)

    Baidu
  • [1]

    Zhang T, Yamaguchi I 1998 Opt. Lett. 23 1221Google Scholar

    [2]

    Li E B, Yao J Q, Yu D Y, Xi J D, Chicharo J 2005 Opt. Lett. 30 189Google Scholar

    [3]

    Atlan M, Gross M, Absil E 2007 Opt. Lett. 32 1456Google Scholar

    [4]

    Takeda M 1990 Industrial Metrology 1 79Google Scholar

    [5]

    Debnath S K, Park Y 2011 Opt. Lett. 36 4677Google Scholar

    [6]

    Li J S, Wang Z, Gao J M, Liu Y, Huang J H 2014 Opt. Eng. 54 031103Google Scholar

    [7]

    He X, Nguyen C V, Pratap M, Zheng Y, Wang Y, Nisbet D R, Williams R J, Rug M, Maier A G, Lee W M 2016 Biomed. Opt. Express 7 3111Google Scholar

    [8]

    Weng J, Li H, Zhang Z, Zhong J 2014 Optik 125 2633Google Scholar

    [9]

    Xiong H, Zhang D 2023 Photonics 10 194Google Scholar

    [10]

    Ma Z, Long J L, Ding Y, Zhang J M, Xi J T, Li Y R, Peng Y Y 2025 Opt. Laser Technol. 181 111807Google Scholar

    [11]

    Matrecano M, Memmolo P, Miccio L, Persano A, Quaranta F, Siciliano P, Ferraro P 2015 Appl. Opt. 54 3428Google Scholar

    [12]

    Hong Y, Shi T, Wang X, Zhang Y, Chen K, Liao G 2017 Opt. Commun. 382 624Google Scholar

    [13]

    Yu H Q, Jia S H, Lin Z H, Gao L M, Zhou X 2023 J. Mod. Opt. 70 77Google Scholar

    [14]

    Wei J, Wu J, Wang C 2024 Sensors 24 5928Google Scholar

    [15]

    Lin Z H, Jia S H, Zhou X, Zhang H J, Wang L N, Li G J, Wang Z 2023 Opt. Lasers Eng. 166 107571Google Scholar

    [16]

    Lin Z H, Jia S H, Wen B, Zhang H J, Yang Z H, Zhou X, Wang L N, Wang Z, Li G J 2024 Opt. Laser Technol. 179 111366Google Scholar

    [17]

    Xiao W, Wang Q, Pan F, Cao R, Wu X, Sun L 2019 Biomed. Opt. Express 10 1613Google Scholar

    [18]

    Sun Q Y, Liu Y W, Chen H, Jiang Z Q 2022 Opt. Continuum 1 475Google Scholar

    [19]

    Kim H W, Cho M, Lee M C 2024 Sensors 24 1950Google Scholar

    [20]

    Cheng Y Y, Wyant J C 1984 Appl. Opt. 23 4539Google Scholar

    [21]

    石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍 2014 63 244201Google Scholar

    Shi B C, Zhu Z Q, Wang X L, Xi S X, Gong L P 2014 Acta Phys. Sin. 63 244201Google Scholar

    [22]

    Ghiglia D C, Pritt M D 1998 Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (New York: Wiley-Interscience

    [23]

    Girshovitz P, Shaked N T 2014 Opt. Lett. 39 2262Google Scholar

    [24]

    Girshovitz P, Shaked N T 2015 Opt. Express 23 8773Google Scholar

  • [1] HAO Aihua, HUANG Jingyan, ZHANG Shiji, WANG Zhijun, WANG Xiaolong. Erratum: In-situ reconstruction of step phase based on orthogonal holograms. Acta Physica Sinica, 2025, 74(7): 079901. doi: 10.7498/aps.74.079901
    [2] Zhong Zhi, Zhao Wan-Ting, Shan Ming-Guang, Liu Lei. Telecentric in-line-and-off-axis hybrid digital holographic high-resolution reconstruction method. Acta Physica Sinica, 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [3] Zhang Yi-Yi, Wu Jia-Chen, Hao Ran, Jin Shang-Zhong, Cao Liang-Cai. Digital holographic microscopy for red blood cell imaging. Acta Physica Sinica, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [4] Wang Xue-Guang, Li Ming, Yu Na-Na, Xi Si-Xing, Wang Xiao-Lei, Lang Li-Ying. Multiple-image encryption method based on spatial angle multiplexing and double random phase encoding. Acta Physica Sinica, 2019, 68(24): 240503. doi: 10.7498/aps.68.20191362
    [5] Xie Jing, Zhang Jun-Yong, Yue Yang, Zhang Yan-Li. Focusing properties of Lucas sieves. Acta Physica Sinica, 2018, 67(10): 104201. doi: 10.7498/aps.67.20172260
    [6] Zhou Hong-Qiang, Wan Yu-Hong, Man Tian-Long. Adaptive imaging by incoherent digital holography based on phase change. Acta Physica Sinica, 2018, 67(4): 044202. doi: 10.7498/aps.67.20172202
    [7] Gu Ting-Ting, Huang Su-Juan, Yan Cheng, Miao Zhuang, Chang Zheng, Wang Ting-Yun. Refractive Index Measurement Research for Optical Fiber Based on Digital Hologram. Acta Physica Sinica, 2015, 64(6): 064204. doi: 10.7498/aps.64.064204
    [8] Shi Bing-Chuan, Zhu Zhu-Qing, Wang Xiao-Lei, Xi Si-Xing, Gong Li-Ping. Analysis and improvement of reconstruction phase error in the image plane digital holography. Acta Physica Sinica, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [9] Fan Feng, Li Jun-Xiang, Song Xiu-Fa, Zu Qiao-Fen, Wang Hua-Ying. High accuracy phase reconstruction of digital hologram by Hilbert transform. Acta Physica Sinica, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [10] Wang Da-Yong, Wang Yun-Xin, Guo Sha, Rong Lu, Zhang Yi-Zhuo. Research on speckle denoising by lensless Fourier transform holographic imaging with angular diversity. Acta Physica Sinica, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [11] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [12] Lu Ming-Feng, Wu Jian, Zheng Ming. The production mechanism of image periodicity in digital holography and its application in zero-order noise suppression. Acta Physica Sinica, 2013, 62(9): 094207. doi: 10.7498/aps.62.094207
    [13] Li Jun-Chang, Lou Yu-Li, Gui Jin-Bin, Peng Zu-Jie, Song Qing-He. Simplified sampling models for digital hologram. Acta Physica Sinica, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [14] Ma Jun, Yuan Cao-Jin, Feng Shao-Tong, Nie Shou-Ping. Full-field detection of polarization state based on multiplexing digital holography. Acta Physica Sinica, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [15] Chen Ping, Tang Zhi-Lie, Wang Juan, Fu Xiao-Di, Chen Fei-Hu. Analysis of digital in-line polarization holography by Stokes parameters. Acta Physica Sinica, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [16] Li Jun-Chang. Focal depth research of digital holographic reconstructed image. Acta Physica Sinica, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [17] Cui Hua-Kun, Wang Da-Yong, Wang Yun-Xin, Liu Chang-Geng, Zhao Jie, Li Yan. Automatic procedure for non-coplanar aberration compensation in lensless Fourier transform digital holography. Acta Physica Sinica, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [18] Xu Xian-Feng, Han Li-Li, Yuan Hong-Guang. Analysis and correction of object wavefront reconstruction errorsin two-step phase-shifting interferometry. Acta Physica Sinica, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [19] Li Jun-Chang, Zhang Ya-Ping, Xu Wei. High quality digital holographic wave-front reconstruction system. Acta Physica Sinica, 2009, 58(8): 5385-5391. doi: 10.7498/aps.58.5385
    [20] Shen Jin-Yuan, Li Xian-Guo, Chang Sheng-Jiang, Zhang Yan-Xin. Application of phase features in recognizing 3-D objects. Acta Physica Sinica, 2005, 54(11): 5157-5163. doi: 10.7498/aps.54.5157
Metrics
  • Abstract views:  567
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2024
  • Accepted Date:  15 December 2024
  • Available Online:  23 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map