-
Dielectric capacitors are essential energy storage devices with high power density. The dielectric films of capacitors will undergo aging at working temperatures and cause performance degradation. Polyurea (PU) is a potential working dielectric for capacitors with high energy density and low dielectric loss. However, the aging characteristics and underlying mechanism of PU has never been discussed. Given the operating temperature for commercially available dielectric capacitors, PU is exposed to 80℃ for different durations to investigate its aging characteristics. Compared with dielectric constant, breakdown strength changes significantly with aging time, which can be used as a characteristic parameter to evaluate the aging degree of PU. Combing the experimental and simulation methods, the correlation between molecular structure, trap properties and breakdown strength during thermo-oxidative aging has been studied and established. The results show that: the thermal-oxidative aging of PU can be divided into three stages. In the early stage, the bridging effect of oxygen promotes the order arrangement of molecular chains, which is shown in Fig. (a). It not only reduces the molecular chain spacing, but also slightly enhances the H-bonding interaction between adjacent urea groups. As a result, the dielectric constant decreases, while the breakdown strength are almost unchanged. In the middle stage, ether bond cleavage induces the formation of biphenyl structures, leading to a disordered structure, which is illustrated in Fig. (b). The enhanced mobility effect increases the dielectric constant. Meanwhile, the biphenyl structures deepen the trap depth, reduce carrier mobility and increase the breakdown strength. In the late stage, oxygen promotes the decomposition of urea groups, which reduces the number of urea groups that contributes to deep traps. At the same time, the main chain undergoes cleavage, releasing small molecules such as CO2 and H2O, which is revealed in Fig. (c). These factors collectively lead to a significant reduction in the breakdown strength of PU. In addition, the variation of dielectric constant, breakdown strength and energy density in the three stages is summarized, which is shown in Fig. (d).
-
Keywords:
- polyurea /
- energy storage characteristics /
- thermal-oxidative aging /
- degradation mechanism
-
[1] Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, Zhang S T, Nan B, Tan H, Ye Z G 2020 J. Mater. Chem. C. 816648.
[2] Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 281.
[3] Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2021 Chem. Eng. J. 420127614
[4] Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51776(in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭2002 51776]
[5] Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69217701(in Chinese) [董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏2020 69217701]
[6] Jiang X W, Wang S H, Wang W H, Han R 2021 Elec. Mater. 233156
[7] Wang Q, Wu C, Gao Y F, Liu S M, Liu S Q, Zuo Z, Liang X D 2022 High Volt. 71123
[8] Ye R F, Pei J Y, Zheng M S, Dang Z M 2020 Trans. China Elect. Socie. 353529(in Chinese) [叶润峰, 裴家耀, 郑明胜, 党智敏2020电工技术学报353529]
[9] Li Y X 2021M.S. Thesis ( Chengdu: Southwest Jiaotong University) (in Chinese) [李奕萱2021硕士学位论文(成都: 西南交通大学)]
[10] Wang Y, Zhou X, Lin M R, Lu S G, Lin J H, Furman E, Zhang Q M 2010 IEEE Trans. Dielectr. Electr. Insul. 1728
[11] Wang Y, Zhou X, Lin M R, Zhang Q M 2009 Appl. Phys. Lett. 94202905
[12] Feng Y, Jiang L H, Yang A Q, Liu X, Yang L Q, Lu G H, Li S T 2022 Macromol. Rapid Commun. 432100700
[13] Wu S, Lin MR, Burlingame Q, Zhang Q M 2014Appl. Phys. Lett. 104 072903
[14] Zhao Z H, Zhang S, Li M R, Feng Y, Yang L Q, Li S T 2024J. Appl. Phys. 135194103
[15] Hattori T, Takahashi Y, Iijima M, Fukada E 19969th International Symposium on Electrets (ISE 9) Shanghai, China, SEP 25-30, 1996 p819
[16] Zhao Z H, Feng Y, Yang L Q, Zhang S, Liu X, Zhang Y, Li M R, Li S T 2023Appl. Phys. Lett. 123 232901
[17] Wu Y J, Zhao H, Zhang N, Wang H Q, Zhang C Y, Yin L, Bai J B 2024J. Mater. Chem. C 12 2993
[18] Zhu X D, Chen W X, Pan M, Zhou X, Zhang Y, Dong L J 2024 Appl. Polym. Mater. 64808
[19] Feng Y, Yang L Q, Qu G H, Suga T, Nishide H, Chen G G, Li S T 2020 Macromol. Rapid Commun. 412000167
[20] Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020Ener. Stor. Materi. 28 255
[21] Hu J, Zhao X C, Xie J H, Liu Y, Sun S L 2022Journ. Poly. Resear. 29 182
[22] Zhang J Y, Su A S, Xu L L, Wu Z Q, Li Z Y, Zheng J 2021Schweiz. Z. Hydrol. 4 1
[23] Sha G R, Lai B B, Zhao Q L, Sun Y P, Wang X B, Lou W J, Liu X L 2024Tribology. 44 1074
[24] Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016TCES. 31 14(in Chinese)[ 鲁旭,韩帅,李庆民,黄旭炜,王学磊,王高勇2016电工技术学报31 14]
[25] Xiong J, Fan X, Long D J, Zhu B F, Zhang X, Lu J Y, Xie Y C, Zhang Z C 2022J. Mater. Chem. A. 10 24611
[26] Zhang C S, Zhang C, Ren C Y, Huang B D, Xing Z L, Shao T 2024Trans. China Elect. Socie. 39 2193(in Chinese) [张传升, 章程, 任成燕, 黄邦斗, 邢照亮, 邵涛2024电工技术学报39 2193]
[27] Li J L, Wang S J, Zhu Y J, Luo Z, Zhang Y R, Shao Q, Quan H, Wang M T, Hu S X, Yang M C, Fu J, Wang R Hu J, Yuan H, He J L, Li Q 2023J. Mater. Chem. A 11 10659
[28] Yanagisawa Y, Nan Y, Okuro K, Aida T 2018Sci. 359 72
[29] Sebastian N, Contal C, Sanchez-Ferrer A Pieruccini M 2018Soft. Matter. 14 7839
[30] Dong R, Ranjan V, Nardelli M B Bernholc J 2015Phys. Revie. B 92 024203
[31] Feng Y, Qu G H, Li S T 2024Pcsee. 44 3360(in Chinese) [冯阳,渠广昊,李盛涛2024中国电机工程学报44 3360]
[32] Feng Y, Qu G H, Li S T 2024HVE. 50 2363(in Chinese) [冯阳,渠广昊,李盛涛2024高电压技术50 2363]
[33] Feng Y, Yang L Q, Qu G H, Suga T, Nishide H, Chen G, Li S T 2020Macromol. Rapid. Commun. 41 2000167
Metrics
- Abstract views: 27
- PDF Downloads: 0
- Cited By: 0