Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Suppression of randomness of electrically pumped random lasing from light-emitting devices based on ZnO films

JI Ran JIANG Shuming XIA Chengtao YANG Deren MA Xiangyang

Citation:

Suppression of randomness of electrically pumped random lasing from light-emitting devices based on ZnO films

JI Ran, JIANG Shuming, XIA Chengtao, YANG Deren, MA Xiangyang
cstr: 32037.14.aps.74.20241440
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this work, the randomness of electrically pumped random laser (RL) from ZnO-based metal-insulator-semiconductor (MIS) structured light-emitting device (LED) is significantly suppressed, by using appropriately patterned hydrothermal ZnO film with large crystal grains as the light-emitting layer. The hydrothermal ZnO film on silicon substrate, with the crystal grains sized over 500 nm, is first patterned into a number of square blocks separated by streets by using laser direct writing photolithography. Based on such a patterned ZnO film, the MIS (Au/SiO2/ZnO) structured LEDs are prepared on silicon substrates. Under the same injection current, the LED with the patterned ZnO film exhibits much fewer RL modes than that with the non-patterned ZnO film and, moreover, the former displays ever-fewer RL modes with the the decrease of block size. Besides, the wavelength of the strongest RL mode from the LED with the patterned ZnO film fluctuates in a much narrower range than that with the non-patterned ZnO film. It is worth mentioning that the LED with the patterned hydrothermal ZnO film can even be pumped into the single-mode RL under the desirable conditions such as low injection current and small patterned blocks. Moreover, the comparative investigation indicates that the LED with the large-grain hydrothermal ZnO film exhibits the smaller RL threshold current than that with the small-grain sputtered ZnO film, and the former has fewer RL modes and a higher output lasing power than the latter under the same injection current. As for the physical mechanism behind the aforementioned results, it is analyzed as follows. Regarding the LED with the patterned ZnO film, on the one hand, due to the limited numbers of crystal grains and grain boundaries within a single block, the multiple optical scattering is remarkably suppressed. Then, the paths through which the net optical gain and therefore the lasing action can be achieved via multiple optical scattering are much fewer than those in the case of the non-patterned ZnO film. On the other hand, due to optical gain competition among different RL modes occurring within the limited space of a single block, the RL modes with significant spatial overlap cannot lase simultaneously. For the two-fold reasons as mentioned above, the LED exhibits ever-fewer RL modes with the decrease of the size of blocks. Moreover, the inter-block optical coupling enables the optical gain competition among different RL modes to be more violent within a single block, leading to further reduction of RL modes.
      Corresponding author: MA Xiangyang, mxyoung@zju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200102).
    [1]

    Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y, Chang R P H 1998 Appl. Phys. Lett. 73 3656Google Scholar

    [2]

    Yu S F, Leong E S P 2004 IEEE J. Quantum Electron. 40 1186Google Scholar

    [3]

    Cao H, Zhao Y G, Ong H C, Chang R P H 1999 Phys. Rev. B 59 15107Google Scholar

    [4]

    Thareja R K, Mitra A 2000 Appl. Phys. B: Lasers Opt. 71 181Google Scholar

    [5]

    Lau S P, Yang H Y, Yu S F, Li H D, Tanemura M, Okita T, Hatano H, Hng H H 2005 Appl. Phys. Lett. 87 013104Google Scholar

    [6]

    Ursaki V V, Burlacu A, Rusu E V, Postolake V, Tiginyanu I M 2009 J. Opt. A: Pure Appl. Opt. 11 075001Google Scholar

    [7]

    Yu S F, Yuen C, Lau S P, Park W I, Yi G C 2004 Appl. Phys. Lett. 84 3241Google Scholar

    [8]

    Ma X Y, Chen P L, Li D S, Zhang Y Y, Yang D R 2007 Appl. Phys. Lett. 91 251109Google Scholar

    [9]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106Google Scholar

    [10]

    Long H, Fang G J, Huang H H, Mo X M, Xia W, Dong B Z, Meng X Q, Zhao X Z 2009 Appl. Phys. Lett. 95 013509Google Scholar

    [11]

    Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X H, Choy K L 2010 Adv. Mater. 22 1877Google Scholar

    [12]

    Chen P L, Ma X Y, Li D S, Zhang Y Y, Yang D R 2009 Opt. Express 17 4712Google Scholar

    [13]

    Wang C X, Jiang H T, Li Y P, Ma X Y, Yang D R 2013 J. Appl. Phys. 114 133105Google Scholar

    [14]

    Wang C X, Zhu C, Lü C Y, Li D S, Ma X Y, Yang D R 2015 Appl. Surf. Sci. 332 620Google Scholar

    [15]

    Jiang S M, Xia C T, Ji R, Pang H W, Li D S, Yang D R, Ma X Y 2024 Acs Appl. Mater. Interfaces 16 3719Google Scholar

    [16]

    Ma X Y, Pan J W, Chen P L, Li D S, Zhang H, Yang Y, Yang D R 2009 Opt. Express 17 14426Google Scholar

    [17]

    Ryglowski L, Cyprych K, Mysliwiec J 2022 Opt. Commun. 510 127939Google Scholar

    [18]

    Li Y P, Wang C X, Jin L, Ma X Y, Yang D R 2013 Appl. Phys. Lett. 102 161112Google Scholar

    [19]

    徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 62 084207Google Scholar

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207Google Scholar

    [20]

    Jiang X Y, Soukoulis C M 2000 Phys. Rev. Lett. 85 70Google Scholar

    [21]

    Sebbah P, Vanneste C 2002 Phys. Rev. B 66 144202Google Scholar

    [22]

    杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏 2012 61 114203Google Scholar

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203Google Scholar

    [23]

    Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, Wang Y J 2022 Chin. Phys. Lett. 39 123401 (in Chinese)Google Scholar

    [24]

    Liu H, Li S J, You Y Q, Wang J W, Sun J, Zhang L, Xiong L L 2023 Optik 281 170853Google Scholar

    [25]

    Wang Y Y, Xu C X, Jiang M M, Li J T, Dai J, Lu J F, Li P L 2016 Nanoscale 8 16631Google Scholar

    [26]

    魏伟华, 李木天, 刘墨南 2018 67 064203Google Scholar

    Wei W H, Li M T, Liu M N 2018 Acta Phys. Sin. 67 064203Google Scholar

    [27]

    马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添 2019 中国光学 12 649Google Scholar

    Ma G H, Zhang J B, Zhang H, Jin L, Wang G X, Xu Y T 2019 Chin. Opt. 12 649Google Scholar

  • 图 1  在硅衬底上制备基于图案化水热ZnO薄膜的MIS结构LED的步骤示意图

    Figure 1.  Schematic diagram for the procedures of preparing MIS structured LEDs based on the patterned hydrothermal ZnO film on a silicon substrate.

    图 2  (a) 水热ZnO薄膜经图案化处理后的表面形貌SEM照片; (b) 单个Block内ZnO薄膜表面形貌的SEM照片; (c) Block和Street的截面SEM照片; (d) 单个Block的截面SEM照片

    Figure 2.  (a) SEM image for the surface morphology of the patterned hydrothermal ZnO film; (b) SEM image for the surface morphology of the ZnO film within a single block; (c) cross-sectional SEM image for the blocks and streets; (d) cross-sectional SEM image for the ZnO film within a single block.

    图 3  各种LED在不同注入电流下采集的电致发光谱 (a) 未经图案化处理的LED; (b) LED-10; (c) LED-5; (d) LED-2.5

    Figure 3.  EL spectra acquired at different injection currents for various LEDs: (a) Non-patterned LED; (b) LED-10; (c) LED-5; (d) LED-2.5.

    图 4  未经图案化处理的LED, LED-10, LED-5, LED-2.5的电抽运随机激射 (a), (b) 有效激射模式数和SMSR随注入电流的变化情况; (c), (d) 在注入电流分别为 7 mA和 25 mA时采集的20幅EL谱中最强激射峰的波长分布情况, 其中误差棒的最高点和最低点分别代表最大值和最小值, 方框的中间线代表中值、上边线和下边线分别代表第三四分位数和第一四分位数

    Figure 4.  Electrically pumped random lasing from non-patterned LED, LED-10, LED-5, and LED-2.5: (a), (b) Number of effective lasing modes and SMSR as a function of injected current; (c), (d) distributions of the wavelengths of the strongest lasing peaks in the 20 EL spectra acquired at the injection currents of 7 mA and 25 mA, respectively, the error bar represents the minimum and maximum values, and the middle line in the box represents the median value, the upper and lower lines of the box represent the third quartile (Q3) and first quartile (Q1), respectively.

    图 5  对于LED-2.5在注入电流为7 mA时采集的 20幅EL谱 (a) 出现单模、双模、三模激射的例数, 插图为出现单模激射的EL谱; (b) 单模激射的峰位分布情况

    Figure 5.  For the 20 EL spectra of LED-2.5 acquired at the injection current of 7 mA: (a) Number of cases exhibiting single-mode, dual-mode or triple-mode lasing, the inset shows the EL spectrum of single-mode random lasing; (b) distribution of wavelengths for the single-mode lasing actions.

    图 6  基于水热法和溅射法制备的ZnO薄膜的两种LED-2.5的电抽运随机激射 (a) 有效激射模式数随注入电流的变化情况; (b) 探测到的输出光功率随注入电流的变化关系曲线

    Figure 6.  Electrically pumped random lasing actions from the two LED-2.5 respectively based on the hydrothermal and sputtered ZnO film: (a) Number of effective lasing modes as a function of the injection current; (b) curves of the detected output optical power changing with the injection current.

    图 7  (a) 基于硅衬底上ZnO薄膜的MIS结构LED在足够高的正向偏压/注入电流下的能带结构示意图; (b) ZnO薄膜内光多重散射的示意图

    Figure 7.  (a) Schematic diagram of the energy band structure for the MIS-structured LED using ZnO film on silicon substrate under sufficiently high forward bias/injection current; (b) schematic diagram of multiple light scattering within the ZnO film.

    Baidu
  • [1]

    Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y, Chang R P H 1998 Appl. Phys. Lett. 73 3656Google Scholar

    [2]

    Yu S F, Leong E S P 2004 IEEE J. Quantum Electron. 40 1186Google Scholar

    [3]

    Cao H, Zhao Y G, Ong H C, Chang R P H 1999 Phys. Rev. B 59 15107Google Scholar

    [4]

    Thareja R K, Mitra A 2000 Appl. Phys. B: Lasers Opt. 71 181Google Scholar

    [5]

    Lau S P, Yang H Y, Yu S F, Li H D, Tanemura M, Okita T, Hatano H, Hng H H 2005 Appl. Phys. Lett. 87 013104Google Scholar

    [6]

    Ursaki V V, Burlacu A, Rusu E V, Postolake V, Tiginyanu I M 2009 J. Opt. A: Pure Appl. Opt. 11 075001Google Scholar

    [7]

    Yu S F, Yuen C, Lau S P, Park W I, Yi G C 2004 Appl. Phys. Lett. 84 3241Google Scholar

    [8]

    Ma X Y, Chen P L, Li D S, Zhang Y Y, Yang D R 2007 Appl. Phys. Lett. 91 251109Google Scholar

    [9]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106Google Scholar

    [10]

    Long H, Fang G J, Huang H H, Mo X M, Xia W, Dong B Z, Meng X Q, Zhao X Z 2009 Appl. Phys. Lett. 95 013509Google Scholar

    [11]

    Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X H, Choy K L 2010 Adv. Mater. 22 1877Google Scholar

    [12]

    Chen P L, Ma X Y, Li D S, Zhang Y Y, Yang D R 2009 Opt. Express 17 4712Google Scholar

    [13]

    Wang C X, Jiang H T, Li Y P, Ma X Y, Yang D R 2013 J. Appl. Phys. 114 133105Google Scholar

    [14]

    Wang C X, Zhu C, Lü C Y, Li D S, Ma X Y, Yang D R 2015 Appl. Surf. Sci. 332 620Google Scholar

    [15]

    Jiang S M, Xia C T, Ji R, Pang H W, Li D S, Yang D R, Ma X Y 2024 Acs Appl. Mater. Interfaces 16 3719Google Scholar

    [16]

    Ma X Y, Pan J W, Chen P L, Li D S, Zhang H, Yang Y, Yang D R 2009 Opt. Express 17 14426Google Scholar

    [17]

    Ryglowski L, Cyprych K, Mysliwiec J 2022 Opt. Commun. 510 127939Google Scholar

    [18]

    Li Y P, Wang C X, Jin L, Ma X Y, Yang D R 2013 Appl. Phys. Lett. 102 161112Google Scholar

    [19]

    徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 62 084207Google Scholar

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207Google Scholar

    [20]

    Jiang X Y, Soukoulis C M 2000 Phys. Rev. Lett. 85 70Google Scholar

    [21]

    Sebbah P, Vanneste C 2002 Phys. Rev. B 66 144202Google Scholar

    [22]

    杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏 2012 61 114203Google Scholar

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203Google Scholar

    [23]

    Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, Wang Y J 2022 Chin. Phys. Lett. 39 123401 (in Chinese)Google Scholar

    [24]

    Liu H, Li S J, You Y Q, Wang J W, Sun J, Zhang L, Xiong L L 2023 Optik 281 170853Google Scholar

    [25]

    Wang Y Y, Xu C X, Jiang M M, Li J T, Dai J, Lu J F, Li P L 2016 Nanoscale 8 16631Google Scholar

    [26]

    魏伟华, 李木天, 刘墨南 2018 67 064203Google Scholar

    Wei W H, Li M T, Liu M N 2018 Acta Phys. Sin. 67 064203Google Scholar

    [27]

    马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添 2019 中国光学 12 649Google Scholar

    Ma G H, Zhang J B, Zhang H, Jin L, Wang G X, Xu Y T 2019 Chin. Opt. 12 649Google Scholar

  • [1] ZOU Wenjing, ZHAO Yukang, WU Youzhi, ZHANG Cairong. White organic light-emitting devices based on phosphor-sensitized fluorescence. Acta Physica Sinica, 2025, 74(2): 028101. doi: 10.7498/aps.74.20241294
    [2] Xu Yu-Xuan, Yao Tai-Yu, Deng Li, Chen Shi-Mei, Xu Chen-Yao, Tang Wen-Xuan. Directional emission properties of thin film microdisk. Acta Physica Sinica, 2024, 73(8): 084201. doi: 10.7498/aps.73.20231754
    [3] Tao Cong, Wang Jing-Min, Niu Mei-Ling, Zhu Lin, Peng Qi-Ming, Wang Jian-Pu. Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Acta Physica Sinica, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [4] Li Ming-Hua, Yuan Zhen-Zhou, Xu Yan, Tian Jun-Fang. Randomness analysis of lane formation in pedestrian counter flow based on improved lattice gas model. Acta Physica Sinica, 2015, 64(1): 018903. doi: 10.7498/aps.64.018903
    [5] He Chao, Zhang Xu, Liu Zhi, Cheng Bu-Wen. Recent progress in Ge and GeSn light emission on Si. Acta Physica Sinica, 2015, 64(20): 206102. doi: 10.7498/aps.64.206102
    [6] Zhang Ran, Xiao Xin-Ze, Lü Chao, Luo Yang, Xu Ying. Assembling of gold nanorods by femtosecond laser fabrication. Acta Physica Sinica, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [7] Xu Yun, Li Yun-Peng, Jin Lu, Ma Xiang-Yang, Yang De-Ren. Low-threshold electrically pumped ultraviolet random lasing from ZnO film prepared by pulsed laser deposition. Acta Physica Sinica, 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [8] Tan Hong-Fang, Jin Tao, Qu Shi-Xian. Frozen random patterns in a globally coupled discontinuous map lattices system. Acta Physica Sinica, 2012, 61(4): 040507. doi: 10.7498/aps.61.040507
    [9] Chang Yan-Ling, Zhang Qi-Feng, Sun Hui, Wu Jin-Lei. Development and behavior study of a ZnO nanowire-based electroluminescence device with double insulating-layer structure. Acta Physica Sinica, 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [10] Wang Hong, Ouyang Zheng_Biao, Han Yan-Ling, Meng Qing-Sheng, Luo Xian-Da, Liu Jin-Song. Effect of the strength of randomness on lasing threshold in one-dimensional partially random media. Acta Physica Sinica, 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [11] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [12] Li Guo-Hui, Xu De-Ming, Zhou Shi-Ping. Chaos synchronization by using random parametric adaptive control method. Acta Physica Sinica, 2004, 53(2): 379-382. doi: 10.7498/aps.53.379
    [13] Sun Tao, K.S.Wong, Zhang Wei-Li, Chai Lu, Wang Qing-Yue, K.L.Wong. Time-resolved study of the random lasing in ZnO powder. Acta Physica Sinica, 2003, 52(9): 2127-2130. doi: 10.7498/aps.52.2127
    [14] DENG CHAO-YONG, ZHAO HUI, WANG YONG-SHENG. SPATIAL DISTRIBUTION OF ELECTRON ENERGY IN THIN FILM ELECTROLUMINESCENT DEVICES. Acta Physica Sinica, 2001, 50(7): 1385-1389. doi: 10.7498/aps.50.1385
    [15] QU KAI-YANG, JIANG YI. STUDIES ON RANDOMNESS AND NUCLEATION RATE OF SUPERCOOLED WATER FREEZING FROM HOMOGENEOUS NUCLEATION. Acta Physica Sinica, 2000, 49(11): 2214-2219. doi: 10.7498/aps.49.2214
    [16] LIU ZU-LI, WEI HE-LIN, WANG HAN-WEN, WANG JUN-ZHEN. A RADOM MODEL OF THIN FILM GROWTH. Acta Physica Sinica, 1999, 48(7): 1302-1308. doi: 10.7498/aps.48.1302
    [17] XING YONG-ZHONG, XU GONG-OU. STOCHASTICITY OF THE EFFECTIVE SUBSPACE TAKEN UP BY A COHERENT STATE IN QUANTUM SYSTEM CORRESPONDING TO CLASSICAL CHAOTIC ONE. Acta Physica Sinica, 1999, 48(5): 769-774. doi: 10.7498/aps.48.769
    [18] ZHENG XING-WU, LING ZHAO-FEN, Lü JING, HAN FU. PHYSICAL PROPERTIES OF THE ORION KL SUPER WATER MASER IN “QUIESCENT” PHASE. Acta Physica Sinica, 1996, 45(8): 1418-1424. doi: 10.7498/aps.45.1418
    [19] XU YUN, ZHANG JIAN-XIA, DU SHI-PEI. THE JUMP STOCHASTICITY CHARACTERISTICS OF NONLI-NER FUNCTION IN THE DYNAMIC SYSTEM. Acta Physica Sinica, 1991, 40(1): 33-38. doi: 10.7498/aps.40.33
    [20] FU PAN-MING, YE PEI-XIAN. THE EFFECT OF THE STOCHASTIC PROPERTY OF LASER ON THE DEGENERATE FOUR-WAVE MIXING. Acta Physica Sinica, 1985, 34(6): 737-744. doi: 10.7498/aps.34.737
Metrics
  • Abstract views:  531
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2024
  • Accepted Date:  18 December 2024
  • Available Online:  06 January 2025
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map