Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of electron cyclotron resonance heating modulation on edge turbulence driving and spreading in HL-2A tokamak

HU Yingxin ZHAO Kaijun LI Jiquan YAN Longwen XU Jianqiang HUANG Zhihui YU Deliang XIE Yaoyu DING Xiaoguan WEN Siyu

Citation:

Effects of electron cyclotron resonance heating modulation on edge turbulence driving and spreading in HL-2A tokamak

HU Yingxin, ZHAO Kaijun, LI Jiquan, YAN Longwen, XU Jianqiang, HUANG Zhihui, YU Deliang, XIE Yaoyu, DING Xiaoguan, WEN Siyu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The plasma flow generated by turbulent nonlinear interaction can improve plasma confinement by suppressing turbulence and its driven transport. Turbulence can be driven by local gradients and propagate radially from far beyond its relevant length. Effects of electron cyclotron resonance heating (ECRH) modulation on edge turbulence driving and spreading are observed for the first time in the edge plasma of the HL-2A tokamak. These experiments are performed by a fast reciprocating Langmuir probe array. When ECRH modulation is applied, both the edge temperature and the edge plasma density are higher, and the radial electric field is stronger. The edge radial electric field, turbulence, and Reynolds stresses are all enhanced when the ECRH is applied, while the ion-ion collision rate is reduced. Figures (a)-(g) show the conditional averages of the ECRH power, turbulence intensity, turbulent Reynolds stress gradient, $ {\boldsymbol{E}}_{r}\times \boldsymbol{B} $ poloidal velocity, density gradient, turbulence drive rate and turbulence spreading rate, respectively. With ECRH applied, both the turbulence intensity and the Reynolds stress gradients increase. The maximum turbulence intensity appears at the beginning of the ECRH switch-off while the maximum stress gradient occurs at the end of the ECRH. The evolution of the $ {\boldsymbol{E}}_{r}\times \boldsymbol{B} $ poloidal velocity is very similar to that of the Reynolds stress gradient. This observation suggests that the poloidal flow is the result of the combined effect of turbulence nonlinear driving and damping. The enhancement of Reynolds stress during ECRH modulation mainly depends on the increase of the turbulence intensity, with the increase in radial velocity fluctuation intensity being more significant. The turbulence drive and spreading rates also increase with ECRH. The maximum drive rate appears at the beginning of the ECRH switch-off, while the maximum spreading rate occurs at the end of the ECRH. This analysis indicates that turbulence driving and spreading are enhanced, with the former being dominant. This result suggests that the enhancements of turbulence driving and spreading lead the turbulence and Reynolds stress to increase, and thus producing the stronger edge flows.
  • 图 1  双台阶静电探针结构图

    Figure 1.  Structure of two-step electrostatic probe array.

    图 2  等离子体参数的时间演化 (a) ECRH功率; (b)环向磁场强度$ {B}_{{\mathrm{t}}}; $ (c)等离子体电流$ {I}_{{\mathrm{p}}}; $ (d)线平均电子密度$ \left\langle{{N}_{{\mathrm{e}}}}\right\rangle; $ (e)探针位移

    Figure 2.  Time evolutions of plasma parameters: (a) ECRH power, (b) toroidal magnetic field $ {B}_{{\mathrm{t}}} $, (c) plasma current $ {I}_{{\mathrm{p}}} $, (d) line-averaged electronic density $ \left\langle{{N}_{{\mathrm{e}}}}\right\rangle $; (e) probe displacement.

    图 3  边缘等离子体参数的时间演化 (a) ECRH功率; (b)温度; (c)密度; (d)悬浮电位; (e)离子饱和电流

    Figure 3.  Time evolutions of edge plasma parameters: (a) ECRH power; (b) temperature; (c) density; (d) floating potential; (e) ion saturation current.

    图 4  有无ECRH调制的(a)温度, (b)密度和(c)径向电场的径向分布

    Figure 4.  The radial profiles of (a) temperature, (b) density, and (c) radial electric field with and without ECRH modulation.

    图 5  (a) ECRH功率, (b)压强梯度$ {\nabla P}_{{\mathrm{e}}}/{en}_{{\mathrm{e}}}{Z}_{{\mathrm{i}}} $和(c)极向流$ -{v}_{{\mathrm{\theta }}}{B}_{{\mathrm{t}}} $贡献的径向电场, (d)径向电场$ {E}_{{\mathrm{r}}} $, (e)悬浮电位涨落(虚线)以及其时频图和(f)离子-离子碰撞率的时间演化

    Figure 5.  Time evolutions of (a) ECRH power, contributions of (b) pressure gradient $ {\nabla P}_{{\mathrm{e}}}/({en}_{{\mathrm{e}}}{Z}_{{\mathrm{i}}}) $ and (c) poloidal flows ($ -{v}_{{\mathrm{\theta }}}{B}_{{\mathrm{t}}} $) to the radial electric field, (d) radial electric field, (e) floating potential fluctuation (dash line) and its spectrogram and (e) ion-ion collision rate.

    图 6  (a) ECRH功率, (b)湍流雷诺协强及其(c)梯度和(d) $ {\boldsymbol{E}}_{r}\times \boldsymbol{B} $极向速度的变化的条件平均

    Figure 6.  Conditional averages of (a) ECRH power, (b) Reynolds stress and (c) its gradient, and (d) $ {\boldsymbol{E}}_{r}\times \boldsymbol{B} $ poloidal velocity.

    图 7  (a) ECRH功率, (b)雷诺协强(Rs), (c)极向速度涨落, (d)径向速度涨落, 径向和极向速度涨落的(e)相位差, 及其(f)相关系数的条件平均

    Figure 7.  Conditional averages of (a) ECRH power, (b) Reynolds stress (Rs) , (c) poloidal velocity fluctuation, (d) radial velocity fluctuation, (e) the phase difference between the radial and poloidal velocity fluctuations, and (f) their coherencies.

    图 8  (a) ECRH功率, (b)密度的梯度, (c)湍流驱动的通量, (d)湍流驱动率($ {\omega }_{{\mathrm{D}}} $), (e)湍流传播率($ {\omega }_{{\mathrm{s}}} $), (f)湍流传播的通量和(g)密度涨落的平方的变化的条件平均

    Figure 8.  Conditional averages of (a) ECRH power, (b) density gradient, (c) turbulent driven flux, (d) turbulence drive $ {\mathrm{r}}{\mathrm{a}}{\mathrm{t}}{\mathrm{e}}\left({\omega }_{{\mathrm{D}}}\right) $, (e) turbulence spreading $ {\mathrm{r}}{\mathrm{a}}{\mathrm{t}}{\mathrm{e}}\left({\omega }_{{\mathrm{s}}}\right) $, (f) turbulent spreading flux, and (g) square of fluctuation intensity.

    图 9  (a) ECRH功率, (b)粒子输运速度和(c)湍流传播平均射流度的变化的条件平均

    Figure 9.  Conditional averages of (a) ECRH power, (b) particle transport velocity, (c) and mean jet velocity of turbulence spreading.

    Baidu
  • [1]

    Huang M, Rao J, Li B, Zhou J, Kang Z H, Wang H, Lu B, Xia D H, Wang C, Feng K, Wang M W, Chen G Y, Pu Y N, Lu Z H, Wang J Q, Duan X R, Liu Y 2012 EPJ Web Conf. 32 04012Google Scholar

    [2]

    Xu H D, Wang X J, Zhang J, Liu F K, Huang Y Y, Shan J F, Xu W Y, Li M H, Lohr J, Gorelov Y A, Anderson J P, Zhang Y, Wu D J, Hu H C, Yang Y, Feng J Q, Tang Y Y, Li B, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, EAST Team 2019 EPJ Web Conf. 203 04002Google Scholar

    [3]

    Xia D H, Chen X X, Li J T, Wang R M, Zheng W, the J-TEXT team 2024 EPJ Web Conf. 313 02003Google Scholar

    [4]

    Wagner D, Grünwald G, Leuterer F, Manini A, Monaco F, Münich M, Schütz H, Stober J, Zohm H, Franke T, Thumm M, Gantenbein G, Heidinger R, Meier A, Kasparek W, Lechte C, Litvak A, Denisov G G, Chirkov A V, Tai E M, Popov L G, NichiporenkoV O, Myasnikov V E, Solyanova E A, Malygin S A, Meo F, Woskov P 2008 Nucl. Fusion 48 054006Google Scholar

    [5]

    Kubo S 2012 EPJ Web Conf. 32 02001Google Scholar

    [6]

    Kajiwara K, Ikeda Y, Sakamoto K, Kasugai A, Seki M, Moriyama S, Takahashi K, Imai T, Mitsunaka Y, Fujii T 2003 Fusion Eng. Des. 65 493Google Scholar

    [7]

    Gnesin S, Decker J, Coda S, Goodman T P, Peysson Y, Mazon D 2012 Plasma Phys. Control. Fusion 54 035002Google Scholar

    [8]

    Mariani A, Mantica P, Brunner S, Fontana M, Karpushov A, Marini C, Porte L, Sauter O, the TCV Team, the EUROfusion MST1 Team 2019 Nucl. Fusion 59 126017Google Scholar

    [9]

    Yang Z J, Zhang Y P, Ren X H, Li F, Xu X, Yan W, Zhang X Y, Xia D H, Zhang Z C, GaoY, Zha X Q, Luo Q, Chen Z Y, Cheng Z F, Chen Z P, Gao L, Ding Y H 2021 Nucl. Fusion 61 086005Google Scholar

    [10]

    Wang S X, Liu H Q, Jie Y X, Zang Q, Lyu B, Zhang T, Zeng L, Zhang S B, Shi N, Lan T, Zou Z Y, Li W M, Yao Y, Wei X C, Lian H, Li G, Xu H D, Zhang X J, Wu B, Sun Y W, the EAST Team 2016 Plasma Sci. Technol. 19 015102

    [11]

    Baschetti S, Bufferand H, Ciraolo G, Fedorczak N, Ghendrih P, Tamain P, Serre E, the EUROfusion MST1 team, the TCV team 2019 Nucl. Mater. Energy 19 200Google Scholar

    [12]

    Weiland J, Eriksson A, Nordman H, Zagorodny A 2007 Plasma Phys. Control. Fusion 49 A45Google Scholar

    [13]

    Luo L, Rafiq T, Kritz A H 2013 Comput. Phys. Commun. 184 2267Google Scholar

    [14]

    Doyle E J, Houlberg W A, Kamada Y, Mukhovatov V, Osborne T H, Polevoi A, Bateman G, Connor J W, Cordey J G, Fujita T, Garbet X, Hahm T S, Horton L D, Hubbard A E, Imbeaux F, Jenko F, Kinsey J E, Kishimoto Y, Li J, Luce T C, Martin Y, Ossipenko M, Parail V, Peeters A, Rhodes T L, Rice J E, Roach C M, Rozhansky V, Ryter F, Saibene G, Sartori R, Sips A C C, Snipes J A, Sugihara M, Synakowski E J, Takenaga H, Takizuka T, Thomsen K, Wade M R, Wilson H R, ITPA Transport Physics Topical Group, ITPA Confinement Database, Modelling Topical Group, ITPA Pedestal and Edge Topical Group 2007 Nucl. Fusion 47 S18Google Scholar

    [15]

    Ritz C P, Brower D L, Rhodes T L, Bengtson R D, Levinson S J, LuhmannJr N C, Peebles W A, Powers E J 1987 Nucl. Fusion 27 1125Google Scholar

    [16]

    Zhao K J, Dong J Q, Yan L W, Diamond P H, Cheng J, Hong W Y, Huang Z H, Xu M, Tynan G R, Itoh K, Itoh S -I, Fujisawa A, Nagashima Y, Inagaki S, Wang Z X, Wei L, Li Q, Ji X Q, Huang Y, Liu Yi, Zhou J, Song X M, Yang Q W, Ding X T, Duan X R, the HL-2A Team 2013 Nucl. Fusion 53 083011Google Scholar

    [17]

    Grenfell G, Van Milligen B P, Losada U, Ting W, Liu B, Silva C, Spolaore M, Hidalgo C, The TJ-II Team 2018 Nucl. Fusion 59 016018

    [18]

    Gao J M, Cai L Z, Zou X L, Eich T, Adamek J, Cao C Z, Huang Z H, Ji X Q, Jiang M, Liu L, Lu J, Liu Y, Shi Z B, Thornton A J, Wu N, Xiao G L, Xu M, Yan L W, Yu L M, Yu D L, Yang Q W, Zhong W L, the HL-2A Team 2021 Nucl. Fusion 61 066024Google Scholar

    [19]

    Zhao K J, Nagashima Y, Guo Z B, Dong J Q, Yan L W, Itoh K, Itoh S I, Li X B, Li J Q, Fujisawa A, Inagaki S, Cheng J, Xu J Q, Kosuga Y, Sasaki M, Wang Z X, Zhang H Q, Chen Y Q, Cao X G, Yu D L, Liu Y, Song X M, Xia F, Wang S 2022 Plasma Sci. Technol. 25 015101

    [20]

    Zhao K J, Shi Y J, Hahn S H, Diamond P H, Sun Y, Cheng J, Liu H, Lie N, Chen Z P, Ding Y H, Chen Z Y, Rao B, Leconte M, Bak J G, Cheng Z F, Gao L, Zhang X Q, Yang Z J, Wang N C, Wang L, Jin W, Yan L W, Dong J Q, Zhuang G, J-TEXT team 2015 Nucl. Fusion 55 073022Google Scholar

    [21]

    Zhao K J, Chen Z P, Shi Y J, Diamond P H, Dong J Q, Chen Z P, Ding Y H, Zhuang G, Liu Y B, Zhang H Q, Chen Y Q, Liu H, Cheng J, Nie L, Rao B, Cheng Z F, Gao L, Zhang X Q, Yang Z J, Wang N C, Wang L, Li J Q, Jin W, Xu J Q, Yan L W, Liang Y F, Xie Y Y, Liu B 2020 Nucl. Fusion 60 106030Google Scholar

    [22]

    Manz P, Ribeiro T T, Scott B D, Birkenmeier G, Carralero D, Fuchert G, Müller S H, Müller H W, Stroth U, Wolfrum E 2015 Phys. Plasmas 22 022308Google Scholar

    [23]

    Wu T, Diamond P H, Nie L, Xu M, Yu Y, Hong R J, Chen Y H, Xu J Q, Long T, Zhang Y, Yan Q H, Ke R, Cheng J, Li W, Huang Z H, Yan L W, Chu X, Wang Z H, Hidalgo C 2023 Nucl. Fusion 63 126001Google Scholar

    [24]

    Long T, Diamond P H, Ke R, Nie L, Xu M, Zhang X Y, Li B L, Chen Z P, Xu X, Wang Z H, Wu T, Tian W J, Yuan J B , Yuan B D, Gong S B, Xiao C Y , Gao J M, Hao Z G, Wang N C, Chen Z Y, Yang Z J, Gao L, Ding Y H, Pan Y, Chen W, Hao G Z, Li J Q, Zhong W L, Duan X R 2021 Nucl. Fusion 61 126066

  • [1] DING Xiaoguan, ZHAO Kaijun, XIE Yaoyu, CHEN Zhipeng, CHEN Zhongyong, YANG Zhoujun, GAO Li, DING Yonghua, WEN Siyu, HU Yingxin. Effects of turbulence spreading and symmetry breaking on edge shear flow during sawtooth cycles in J-TEXT tokamak. Acta Physica Sinica, doi: 10.7498/aps.74.20241364
    [2] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, doi: 10.7498/aps.73.20240730
    [3] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, doi: 10.7498/aps.73.20231697
    [4] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230991
    [5] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, doi: 10.7498/aps.72.20231077
    [6] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20222043
    [7] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, doi: 10.7498/aps.70.20202003
    [8] Wu Xue-Ke, Sun Xiao-Qin, Liu Yin-Xue, Li Hui-Dong, Zhou Yu-Lin, Wang Zhan-Hui, Feng Hao. Effects of width and density of supersonic molecule beam on penetration depth of tokamak. Acta Physica Sinica, doi: 10.7498/aps.66.195201
    [9] Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Physica Sinica, doi: 10.7498/aps.65.189401
    [10] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, doi: 10.7498/aps.63.125204
    [11] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, doi: 10.7498/aps.62.245206
    [12] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.075202
    [13] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.115207
    [14] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.59.5596
    [15] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.58.8448
    [16] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.55.1307
    [17] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, doi: 10.7498/aps.52.1970
    [18] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, doi: 10.7498/aps.50.715
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  375
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2024
  • Accepted Date:  19 December 2024
  • Available Online:  08 January 2025

/

返回文章
返回
Baidu
map