-
基于HL-2A托卡马克装置的真实磁场位形,应用大型边缘等离子体湍流模拟程序BOUT++中的子程序模块trans-neut对不同的超声分子束注入(SMBI)密度和宽度进行模拟.在SMBI过程中,保持单位时间内分子注入个数和注入速度恒定,在恒定通量情况下,通过调整注入分子束密度和宽度来研究SMBI注入深度的变化.研究结果表明:在注入密度较小、注入宽度较大时,SMBI的注入深度更深,分子和原子的分解率和电离率的时空区域较宽.分子分解局域化会抑制全局分解率的增长,而分解局域化又会引发局域分解率的加速增长,进而促进全局分解率的增长,促进效果占优导致在注入速度一定的情况下,恒定通量的分子注入发散角越小,分子注入深度越浅.The penetration depth and the fueling efficiency of the supersonic molecular beam injection (SMBI) are affected by both the intrinsic parameters of the SMBI and the parameters of background plasma. The purpose of the present paper is to explore the possible methods of improving the fueling efficiency of SMBI by varying the beam parameters. The penetration depths and the transport processes of SMBI with different beam densities and different beam widths are studied using the trans-neut module of the three-dimensional (3D) edge turbulence simulation code BOUT++. In our present study, the number of the injected molecules per unit time the injection speed and the injected flux are kept constant throughout the SMB fueling process, but the beam density and beam width are adjusted. The simulation is based on the real magnetic configuration of the HL-2A tokamak. Our results indicate that the deeper injection depth can be obtained with a supersonic molecular beam (SMB) with smaller density and larger width. However, the injection depth decreases when the beam density or the beam width increases. The residence time of the beam front can be lengthened by increasing the beam density and widening the beam width. If the beam density increases or the beam width enlarges, not only the injection depth decreases, but also the residence time shortens. The front of the atom density exhibits the behaviors analogous to that of the SMB, namely, both its depth and its residence time decreases with beam density increasing and beam width decreasing. At the same time, the dissociation rate has a larger range in the spatiotemporal coordinate. The global growth of dissociation rate is inhibited by the molecular dissociation localization. However, the localization of the molecular dissociation accelerates the local growth of the dissociation rate, and the global growth of the molecular dissociation rate is promoted. When the promoting effect is dominant, under the condition of constant flux and fixed injection speed, the smaller molecular injection width will lead to the shallower molecular penetration depth. The simulation results suggest that if we attempt to promote the fueling efficiency and to increase the injection depth of SMBI, we should utilize the SMBI with a smaller density and larger beam width. Of course, the concrete influences of the SMBI on injection depth and fueling efficiency should be studied further by varying other relevant parameters of the SMB and the backgroud plasma.
-
Keywords:
- Tokamak /
- plasma fueling /
- supersonic molecule beam injection /
- penetration depth
[1] Sajjad S, Gao X, Ling B, Bhatti S H, Ang T 2009 Phys. Lett. A 373 1133
[2] Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Owen L W, Rasmussen D A, Maruyama S, Parks P B 2000 Phys. Plasmas 7 1878
[3] Yao L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B, Duan X R 2010 Plasma Sci. Technol. 12 529
[4] Yu D L, Chen C Y, Yao L H, Dong J Q, Feng B B, Zhou Y, Shi Z B, Zhou J, Han X Y, Zhong W L, Cui C H, Huang Y, Cao Z, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2012 Nucl. Fusion 52 082001
[5] Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong W L, Xu M 2012 Nucl. Fusion 52 114027
[6] Ma Q, Yu D L, Chen C Y, Wei Y L, Zhong W L, Zou X L, Zuo H Y, Du J L, Liu L, Dong C F, Shi Z B, Zhao K J, Feng B B, Zhou Y, Wang Z H, Xu M, Liu Y, Yan L W, Yang Q W, Yao L H, Ding X T, Dong J Q, Duan X R, Liu Y, HL-2A Team 2016 Nucl. Fusion 56 126008
[7] Huang D W, Chen Z Y, Tong R H, Yan W, Wang S Y, Wei Y N, Ma T K, Dai A J, Wang X L, Jiang Z H, Yang Z J, Zhuang G, Pan Y, J-TEXT Team 2017 Plasma Phys. Contr. Fusion 59 085002
[8] Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Duan X R, Yang Q W 2010 Plasma Phys. Contr. F. 52 045003
[9] Braams B J 1996 Contrib. Plasma Phys. 36 276
[10] Vold E L, Najmabadi F, Conn R W 1992 Nucl. Fusion 32 1433
[11] Rognlien T D, Braams B J, Knoll D A 1996 Contrib. Plasma Phys. 36 105
[12] Rognlien T D, Ryutov D D, Mattor N, Porter G D 1999 Phys. Plasmas 6 1851
[13] Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467
[14] Xu X Q, Umansky M V, Dudson B, Snyder R B 2008 Commun. Comput. Phys. 4 949
[15] Umansky M V, Xu X Q, Dudson B, Lodestro L L, Myra J R 2009 Comput. Phys. Commun. 180 887
[16] Landman I S, Janeschitz G 2007 J. Nucl. Mater. 363 1061
[17] Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 043019
[18] Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K, Xiang N 2016 Chin. Phys. B 25 106601
[19] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 012503
[20] Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H, Sun W G 2016 Chin. Phys. B 25 095201
[21] Wu X K, Li H D, Wang Z H, Feng H, Zhou Y L 2017 Chin. Phys. B 26 065201
[22] Shi Y F, Wang Z H, Ren Q L, Sun A P, Yu D L, Guo W F, Xu M 2017 Chin. Phys. B 26 055201
-
[1] Sajjad S, Gao X, Ling B, Bhatti S H, Ang T 2009 Phys. Lett. A 373 1133
[2] Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Owen L W, Rasmussen D A, Maruyama S, Parks P B 2000 Phys. Plasmas 7 1878
[3] Yao L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B, Duan X R 2010 Plasma Sci. Technol. 12 529
[4] Yu D L, Chen C Y, Yao L H, Dong J Q, Feng B B, Zhou Y, Shi Z B, Zhou J, Han X Y, Zhong W L, Cui C H, Huang Y, Cao Z, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2012 Nucl. Fusion 52 082001
[5] Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong W L, Xu M 2012 Nucl. Fusion 52 114027
[6] Ma Q, Yu D L, Chen C Y, Wei Y L, Zhong W L, Zou X L, Zuo H Y, Du J L, Liu L, Dong C F, Shi Z B, Zhao K J, Feng B B, Zhou Y, Wang Z H, Xu M, Liu Y, Yan L W, Yang Q W, Yao L H, Ding X T, Dong J Q, Duan X R, Liu Y, HL-2A Team 2016 Nucl. Fusion 56 126008
[7] Huang D W, Chen Z Y, Tong R H, Yan W, Wang S Y, Wei Y N, Ma T K, Dai A J, Wang X L, Jiang Z H, Yang Z J, Zhuang G, Pan Y, J-TEXT Team 2017 Plasma Phys. Contr. Fusion 59 085002
[8] Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Duan X R, Yang Q W 2010 Plasma Phys. Contr. F. 52 045003
[9] Braams B J 1996 Contrib. Plasma Phys. 36 276
[10] Vold E L, Najmabadi F, Conn R W 1992 Nucl. Fusion 32 1433
[11] Rognlien T D, Braams B J, Knoll D A 1996 Contrib. Plasma Phys. 36 105
[12] Rognlien T D, Ryutov D D, Mattor N, Porter G D 1999 Phys. Plasmas 6 1851
[13] Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467
[14] Xu X Q, Umansky M V, Dudson B, Snyder R B 2008 Commun. Comput. Phys. 4 949
[15] Umansky M V, Xu X Q, Dudson B, Lodestro L L, Myra J R 2009 Comput. Phys. Commun. 180 887
[16] Landman I S, Janeschitz G 2007 J. Nucl. Mater. 363 1061
[17] Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 043019
[18] Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K, Xiang N 2016 Chin. Phys. B 25 106601
[19] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 012503
[20] Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H, Sun W G 2016 Chin. Phys. B 25 095201
[21] Wu X K, Li H D, Wang Z H, Feng H, Zhou Y L 2017 Chin. Phys. B 26 065201
[22] Shi Y F, Wang Z H, Ren Q L, Sun A P, Yu D L, Guo W F, Xu M 2017 Chin. Phys. B 26 055201
计量
- 文章访问数: 6483
- PDF下载量: 137
- 被引次数: 0