搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁监测试验卫星朗缪尔探针电离层探测技术

刘超 关燚炳 张爱兵 郑香脂 孙越强

引用本文:
Citation:

电磁监测试验卫星朗缪尔探针电离层探测技术

刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强

The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite

Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang
PDF
导出引用
  • 本文依据电磁监测试验卫星(CSES)的任务要求,自主设计研制了卫星载荷朗缪尔探针仪器,以实现对空间等离子体电子密度、电子温度等参数的测量,为探索大地震短临预测与预警新方法提供空间观测数据. 该朗缪尔探针的传感器采用优化的球形传感器,上半球是收集极,下半球是保护极,消除了其结构与支撑杆连接处的终端效应. 传感器表面采用了TiN镀层,保证了其耐原子氧剥蚀能力和均匀的表面功函数. 通过在意大利国家天体物理研究院行星际物理研究所(INAF-IAPS)的地面等离子体环境下的测试,验证了本文设计的朗缪尔探针载荷的可行性和正确性,能够实现电磁监测试验卫星的任务要求.
    China seismo-electromagnetic satellite (CSES) is launched to detect the electromagnetic environment in space for the study of seismic early warning. Langmuir probe is one of the payloads of the CSES satellite, and it is the first time that the Langmuir probe technique has been used in the Chinese satellite. The use of the Langmuir probe is to measure the space plasma parameters, such as electron density (Ne), electron temperature (Te), and to identify the instantaneous change of the space plasma. The Langmuir probe payload is composed of three parts, i.e., two sensors, two rods, and one electronics box. The sensor is installed at the top of the rod to extend out of the satellite surface, and is parallel to the direction of the satellite orbit. The electronics box is installed inside the satellite which includes the sweep voltage circuit, sensor signal circuit, DPU control and processing circuit, the satellite interface circuit, power supply circuit, etc. The sensor is spherical. Its upper hemisphere is a collecting electrode, and its lower hemisphere is a protective electrode. The same sweep voltage is applied to the upper hemisphere and the lower one which can eliminate the terminal effect of the connecting point between the traditional spherical structure and the rod. The diameters of the two sensors are respectively 50 and 10 mm, and the surface areas of the two sensors are respectively 1/2000 and 1/13000 times the satellite surface area. The stability of the satellite ground potential is not affected by the sweep voltages on the sensors. In addition, TiN material is coated on the sensor surface to ensure a uniform surface work function, and to prevent the space atomic oxygen erosion. The decontamination function is designed for the Langmuir probe to eliminate the possible pollution on the orbit. A positive 100 V voltage is applied to the sensor to accelerate electrons to bombard the sensor surface, thereby removing the contamination from the sensor surface. The advantage of the electron bombardment effect is that the TiN film is not damaged, meanwhile the positive 100 V voltage has high reliability and safety on orbit. The decontamination function has been proved to be effective by the test in Italy National Institute for Astrophysics-Institute for Space Astrophysics and Planetology (INAF-IAPS). The plasma environment calibration test of the Langmuir probe is carried out in INAF-IAPS. We measure the electron density and temperature at three different distances from the plasma source, and compare the results with the measured results of the INAF-IAPS reference Langmuir probe. Results show that the test data of our Langmuir probe are consistent with the INAF-IAPS reference data. Our Langmuir probe design is proved to be feasible to achieve the missions of the satellite.
      通信作者: 刘超, liuch@nssc.ac.cn
    • 基金项目: 国家科技重大专项(批准号:Y26604AG80)资助的课题.
      Corresponding author: Liu Chao, liuch@nssc.ac.cn
    • Funds: Project supported by Major Project of the Ministry of Science and Technology of China (Grant No. Y26604AG80).
    [1]

    Shen X H, Wu Y, Shan X J 2007 Recent Dev. World Seismog. 8 38 (in Chinese) [申旭辉, 吴云, 单新建 2007 国际地震动态 8 38]

    [2]

    Yang F, Shen X H, Wu Y 2008 Spacecraft Eng. 1 68 (in Chinese) [杨芳, 申旭辉, 吴云 2008 航天器工程 1 68]

    [3]

    Lebreton J P, Stverak S, Travnicek P 2006 Planet. Space Sci. 54 472

    [4]

    Park J, Min K W, Kim V P 2008 Adv. Space Res. 41 650

    [5]

    Chen F F 2003 IEEE-ICOPS Meeting Jeju, Korea, June 5, 2003

    [6]

    Mott-Smith H M 1926 Phys. Rev. 4 727

    [7]

    Guan Y B, Wang S J, Liu C 2012 Chin. J. Space Sci. 5 750 (in Chinese) [关燚炳, 王世金, 刘超 2012 空间科学学报 5 750]

    [8]

    Liu C, Wang S J, Guan Y B 2012 Chin. J. Radio 6 1081 (in Chinese) [刘超, 王世金, 关燚炳 2012 电波科学学报 6 1081]

    [9]

    Aroh B 2007 Ph. D. Dissertation (Logan: Utah State University)

    [10]

    Szuszczewicz E P 1972 J. Appl. Phys. 3 874

    [11]

    Wahlstrijm M K, Johansson E 1992 Thin Solid Films 220 315

    [12]

    Eriksson A I, Bostrom R, Gill R 2007 Space Sci. Rev. 128 729

    [13]

    Hutchinson I H 2002 Principles of Plasma Diagnostics (London: Cambridge University Press) pp112-124

    [14]

    Carsten W, Daniela S, Sonja T 2007 Plasma Phys. Controlled Fusion 20 5529

    [15]

    Lebreton J P 2011 EPSC-DPS Joint Meeting 2011 Nantes, France, October 2-7, 2011 p1428

  • [1]

    Shen X H, Wu Y, Shan X J 2007 Recent Dev. World Seismog. 8 38 (in Chinese) [申旭辉, 吴云, 单新建 2007 国际地震动态 8 38]

    [2]

    Yang F, Shen X H, Wu Y 2008 Spacecraft Eng. 1 68 (in Chinese) [杨芳, 申旭辉, 吴云 2008 航天器工程 1 68]

    [3]

    Lebreton J P, Stverak S, Travnicek P 2006 Planet. Space Sci. 54 472

    [4]

    Park J, Min K W, Kim V P 2008 Adv. Space Res. 41 650

    [5]

    Chen F F 2003 IEEE-ICOPS Meeting Jeju, Korea, June 5, 2003

    [6]

    Mott-Smith H M 1926 Phys. Rev. 4 727

    [7]

    Guan Y B, Wang S J, Liu C 2012 Chin. J. Space Sci. 5 750 (in Chinese) [关燚炳, 王世金, 刘超 2012 空间科学学报 5 750]

    [8]

    Liu C, Wang S J, Guan Y B 2012 Chin. J. Radio 6 1081 (in Chinese) [刘超, 王世金, 关燚炳 2012 电波科学学报 6 1081]

    [9]

    Aroh B 2007 Ph. D. Dissertation (Logan: Utah State University)

    [10]

    Szuszczewicz E P 1972 J. Appl. Phys. 3 874

    [11]

    Wahlstrijm M K, Johansson E 1992 Thin Solid Films 220 315

    [12]

    Eriksson A I, Bostrom R, Gill R 2007 Space Sci. Rev. 128 729

    [13]

    Hutchinson I H 2002 Principles of Plasma Diagnostics (London: Cambridge University Press) pp112-124

    [14]

    Carsten W, Daniela S, Sonja T 2007 Plasma Phys. Controlled Fusion 20 5529

    [15]

    Lebreton J P 2011 EPSC-DPS Joint Meeting 2011 Nantes, France, October 2-7, 2011 p1428

  • [1] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用.  , 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] 刘超, 张爱兵, 孙越强, 孔令高, 王文静, 关燚炳, 王永松, 郑香脂, 田峥, 高俊. 空间站问天舱等离子体原位成像探测技术.  , 2023, 72(4): 049401. doi: 10.7498/aps.72.20221759
    [3] 杨利霞, 刘超, 李清亮, 闫玉波. 斜入射非线性电离层Langmuir扰动的电磁波传播特性.  , 2022, 71(6): 064101. doi: 10.7498/aps.71.20211204
    [4] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断.  , 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [5] 赵海生, 徐朝辉, 高敬帆, 许正文, 吴健, 冯杰, 徐彬, 薛昆, 李辉, 马征征. 电离层中性气体释放的早期试验效应研究.  , 2018, 67(1): 019401. doi: 10.7498/aps.67.20171620
    [6] 聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸. 中纬度地区电离层偶发E层对量子卫星通信性能的影响.  , 2017, 66(7): 070302. doi: 10.7498/aps.66.070302
    [7] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究.  , 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [8] 郑香脂, 张爱兵, 关燚炳, 刘超, 王文静, 田峥, 孔令高, 孙越强. 电磁监测试验卫星阻滞势分析器探测技术.  , 2017, 66(7): 079401. doi: 10.7498/aps.66.079401
    [9] 郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京. 电磁监测试验卫星离子漂移计探测技术.  , 2017, 66(20): 209401. doi: 10.7498/aps.66.209401
    [10] 常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨. 基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应.  , 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [11] 陈丽娟, 鲁世平, 莫嘉琪. 磁层-电离层耦合过程中等离子体粒子运动的周期轨.  , 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [12] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼.  , 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [13] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [14] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [15] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解.  , 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [16] 杨恢东, 吴春亚, 李洪波, 麦耀华, 朱 锋, 周祯华, 赵 颖, 耿新华, 熊绍珍. VHF等离子体光发射谱(OES)的在线监测.  , 2003, 52(9): 2324-2330. doi: 10.7498/aps.52.2324
    [17] 黄朝松, 李均, M. C. KELLEY. 电离层等离子体交换不稳定性与大气重力波的耦合.  , 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [18] 江志明, 徐至展, 陈时胜, 林礼煌, 张伟清, 钱爱娣. 利用多分幅光学探针诊断系统研究激光等离子体.  , 1988, 37(10): 1658-1663. doi: 10.7498/aps.37.1658
    [19] 朱文浩, 吴毅锋, 陈跃山. 高频电场对双探针法诊断低压等离子体的影响.  , 1986, 35(11): 1426-1435. doi: 10.7498/aps.35.1426
    [20] 夏蒙棼, 胡慧玲. 高频电磁波驱动等离子体电流.  , 1982, 31(2): 150-158. doi: 10.7498/aps.31.150
计量
  • 文章访问数:  6919
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-04
  • 修回日期:  2016-06-17
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map