搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

252Cf自发裂变K X射线发射与动能-电荷关系

刘超 刘世龙 杨毅 冯晶 李昱兆

引用本文:
Citation:

252Cf自发裂变K X射线发射与动能-电荷关系

刘超, 刘世龙, 杨毅, 冯晶, 李昱兆

K X-ray emission and kinetic energy-nuclear charge relationship of 252Cf spontaneous fission

Liu Chao, Liu Shi-Long, Yang Yi, Feng Jing, Li Yu-Zhao
PDF
HTML
导出引用
  • 原子核裂变后多物理量间的关联测量是认识裂变过程直接有效的实验手段, 然而由于初级裂变产物准确的电荷鉴别仍面临技术困难, 电荷相关的多参数研究相对匮乏. 为此, 通过高分辨的低能高纯锗探测器和金硅面垒探测器开展了252Cf自发裂变的裂变碎片K X射线和动能的符合测量. 利用K X射线可以很好地鉴别电荷数Z = 39—62的裂变碎片, 电荷分辨ΔZ≈0.7, K X射线产额呈现强烈的电荷相关性. 借助K X射线给出了碎片平均动能和平均总动能及其分布宽度随核电荷数的分布, 轻碎片动能分布具有鲜明的奇偶效应, 偶Z碎片的动能比奇Z碎片的高约0.48 MeV; 平均总动能在Z = 52—53处达到峰值, 总动能分布宽度在Z = 56附近呈现凹坑, 这反映了形变壳结构对断点形状的显著影响. 裂变碎片K X射线发射的信息及动能-电荷关系研究可为裂变独立产额测量和裂变理论模型的检验提供必要的参考数据.
    Experimental study of physical quantities after fission provides crucial insights into the fission process, which is an indispensable way to test the fission theory. The characteristics of primary fission products before beta decay are of great value in unraveling fission kinematics and nuclear energy applications. However, the measurement of the fragment charge has always been challenging. Multi-parameter studies related to nuclear charge remain relatively scarce. The deexcitation of the primary fission products may undergo internal conversion and is often accompanied by characteristic X-ray emissions. Therefore, the correlated measurement of fragment kinetic energy and K X-rays for 252Cf spontaneous fission is conducted. A silicon surface barrier detector is used to measure the fragment kinetic energy, while two low-energy high-pure germanium detectors are utilized for K X-ray measurement. Identification of fission fragments with Z = 39–62 is realized through characteristic K X-rays with a charge resolution of ΔZ ≈ 0.7. Fission fragment K X-ray yields exhibit a strong charge correlation, with an odd-even effect factor of about 13%. Based on K X-rays, the post-neutron-emission average kinetic energy, average total kinetic energy $(\langle \rm TKE\rangle) $, and its dispersion ($ {\sigma }_{{\mathrm{T}}{\mathrm{K}}{\mathrm{E}}} $) of fission fragments are determined each as a function of nuclear charge. The kinetic energy distribution of light fragments shows a pronounced odd-even effect, with even-Z elements exhibiting kinetic energy enhanced by about 0.48 MeV compared with odd-Z fragments. The peak of the $(\langle\rm TKE\rangle) $ distribution is nearly Z = 52–53, while the minimum of the $ {\sigma }_{{\mathrm{T}}{\mathrm{K}}{\mathrm{E}}} $ appears near Z = 56, indicating the significant influence of deformed shells in the highly asymmetric fission region. The post-neutron kinetic energy distribution of fission fragments from 252Cf (sf) is calculated by using the GEF model and CGMF model. The CGMF model effectively reproduces the overall trend of kinetic energy as a function of charge number, while the results of the GEF calculation are systematically higher than the experimental values. Nonetheless, these two phenomenological models make it difficult to quantitatively describe the kinetic energy distribution of fission fragments accurately. In this study, the insights into K X-ray emissions and kinetic energy-nuclear charge relationships provide valuable reference data for independently measuring the fission yields and verifying the theoretical models of fission.
      通信作者: 刘世龙, liusl@ciae.ac.cn
    • 基金项目: 核数据重点实验室基金(批准号: JCKY23201C153)和稳定支持基础科研计划(批准号: BJ010261223282)资助的课题.
      Corresponding author: Liu Shi-Long, liusl@ciae.ac.cn
    • Funds: Project supported by the Key Laboratory of Nuclear Data Foundation, China (Grant No. JCKY23201C153) and the Continues-Support Basic Scientific Research Project, China (Grant No. BJ010261223282).
    [1]

    Lemaître J F, Goriely S, Hilaire S, Sida J L 2019 Phys. Rev. C 99 034612Google Scholar

    [2]

    Talou P, Stetcu I, Jaffke P, Rising M E, Lovell A E, Kawano T 2021 Comput. Phys. Commun. 269 108087Google Scholar

    [3]

    Scamps G, Simenel C 2018 Nature 564 382Google Scholar

    [4]

    Caamaño M, Farget F, Delaune O, Schmidt K H, Schmitt C, Audouin L, Bacri C O, Benlliure J, Casarejos E, Derkx X, Fernández-Domínguez B, Gaudefroy L, Golabek C, Jurado B, Lemasson A, Ramos D, Rodríguez-Tajes C, Roger T, Shrivastava A 2015 Phys. Rev. C 92 034606Google Scholar

    [5]

    Mariolopoulos G, Hamelin C, Blachot J, Bocquet J P, Brissot R, Crançon J, Nifenecker H, Ristori C 1981 Nucl. Phys. A 361 213Google Scholar

    [6]

    Lang W, Clerc H G, Wohlfarth H, Schrader H, Schmidt K H 1980 Nucl. Phys. A 345 34Google Scholar

    [7]

    Wang T F, Li G W, Zhu L P, Hen O, Zhang G L, Meng Q H, Wang L M, Han H Y, Xia H H 2017 Phys. Rev. C 96 034611Google Scholar

    [8]

    Knitter H H, Hambsch F J, Budtz-Jørgensen C 1992 Nucl. Phys. A 536 221Google Scholar

    [9]

    Boucheneb N, Asghar M, Barreau G, Doan T P, Leroux B, Sicre A, Geltenbort P, Oed A 1991 Nucl. Phys. A 535 77Google Scholar

    [10]

    Glendenin L E, Griffin H C 1965 Phys. Lett. 15 153Google Scholar

    [11]

    Kapoor S S, Bowman H R, Thompson S G 1965 Phys. Rev. 140 B1310Google Scholar

    [12]

    Reisdorf W, Unik J P, Griffin H C, Glendenin L E 1971 Nucl. Phys. A 177 337Google Scholar

    [13]

    Griffin H C 1990 J. Radioanal. Nucl. Chem. 142 279Google Scholar

    [14]

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese) [刘世龙, 杨毅, 李霞, 姜文刚, 韩洪银, 张春利 2017 原子能科学技术 51 343]Google Scholar

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese)Google Scholar

    [15]

    Algutifan N J, Sherman S R, Alexander C W 2015 Appl. Radiat. Isot. 96 135Google Scholar

    [16]

    Bé M M, Chechev V P, Dersch R, Helene O A, Helmer R G, Herman M, Hlaváč S, Marcinkowski A, Molnár G L, Nichols A L, Schönfeld E, Vanin V R, Woods M J 2007 Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications (Vol. 2) (Vienna: IAEA) p50

    [17]

    Tovesson F, Hambsch F J, Oberstedt S, Bax H 2002 J. Nucl. Sci. Technol. 39 673

    [18]

    Schmitt H W, Kiker W E, Williams C W 1965 Phys. Rev. 137 B837Google Scholar

    [19]

    Weissenberger E, Geltenbort P, Oed A, Gönnenwein F, Faust H 1986 Nucl. Instrum. Methods A 248 506Google Scholar

    [20]

    Waldo R W, Karam R A, Meyer R A 1981 Phys. Rev. C 23 1113Google Scholar

    [21]

    Schmidt K H, Jurado B, Amouroux C, Schmitt C 2016 Nucl. Data Sheets 131 107Google Scholar

    [22]

    Henschel H, Kohnle A, Hipp H, Gönnenwein G 1981 Nucl. Instrum. Methods 190 125Google Scholar

    [23]

    Rao M N, Biswas D C, Choudhury R K 1990 Nucl. Instrum. Methods B 51 102Google Scholar

    [24]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [25]

    Dolce S R, Gibson W M, Thomas T D 1969 Phys. Rev. 180 1177Google Scholar

    [26]

    Glendenin L E, Unik J P 1965 Phys. Rev. 140 B1301Google Scholar

    [27]

    Hopkins F F, White J R, Phillips G W, Moore C F, Richard P 1972 Phys. Rev. C 5 1015Google Scholar

    [28]

    Laurent R S, Phillips G W, Richard P, Moore C F 1971 Phys. Rev. C 4 1948Google Scholar

    [29]

    Hambsch F J, Oberstedt S 1997 Nucl. Phys. A 617 347Google Scholar

    [30]

    Böckstiegel C, Steinhäuser S, Schmidt K H, Clerc H G, Grewe A, Heinz A, de Jong M, Junghans A R, Müller J, Voss B 2008 Nucl. Phys. A 802 12Google Scholar

    [31]

    Chemey A, Pica A, Yao L, Loveland W, Lee H Y, Kuvin S A 2020 Eur. Phys. J. A 56 1Google Scholar

  • 图 1  裂变碎片与X射线符合测量装置示意图

    Fig. 1.  Schematic view of the experimental setup for fission fragment and X-ray correlated measurement.

    图 2  低能高纯锗探测器的探测效率曲线

    Fig. 2.  Detection efficiency curve for the low energy germanium detector.

    图 3  符合测量装置对X射线的绝对探测效率

    Fig. 3.  Absolute X-ray detection efficiency for the correlated measurement setup.

    图 4  252Cf自发裂变的裂变碎片K X射线能谱

    Fig. 4.  Fission fragment K X-ray energy spectrum for 252Cf (sf).

    图 5  金硅面垒半导体探测器对典型裂变碎片的能量响应

    Fig. 5.  Energy response of the silicon surface barrier detector for typical fission fragments.

    图 6  252Cf自发裂变的放中子后裂变碎片能谱

    Fig. 6.  Kinetic energy distribution of the post-neutron fragment from 252Cf (sf).

    图 7  (a)裂变碎片动能与K X射线能量二维谱; (b)依据K X射线能量开窗的碎片动能分布

    Fig. 7.  (a) Two-dimensional histogram for fission fragment kinetic energies and K X-rays; (b) fission fragment kinetic energy distribution gated by K X-ray energy.

    图 8  252Cf自发裂变的K X射线相对产额与电荷数的关系

    Fig. 8.  K X-ray yields of fission fragments as a function of nuclear charge for 252Cf (sf).

    图 9  252Cf自发裂变的平均每碎片K X射线产额与电荷数的关系

    Fig. 9.  Average K X-rays per fragment as a function of nuclear charge for 252Cf(sf).

    图 10  裂变碎片的X射线-X射线二维谱

    Fig. 10.  Two-dimensional histogram of X-ray-X-ray for fission fragments.

    图 11  252Cf自发裂变的放中子后裂变碎片平均动能与电荷的关系

    Fig. 11.  The post-neutron fragment average kinetic energy as a function of nuclear charge for 252Cf (sf).

    图 12  252Cf自发裂变放中子后(a)平均总动能, (b)总动能分布宽度与裂变碎片电荷的关系

    Fig. 12.  The nuclear charge-dependent of (a) post-neutron TKE and (b) the variance of the TKE distributions for 252Cf (sf).

    表 1  252Cf自发裂变的平均动能和平均总动能

    Table 1.  Average kinetic energy and average total kinetic energy of fission fragments for 252Cf (sf).

    $ \overline{{E}_{{\mathrm{L}}}} $/MeV $ \overline{{E}_{{\mathrm{H}}}} $/MeV $ \overline{{\mathrm{T}}{\mathrm{K}}{\mathrm{E}}} $/MeV
    本工作 102.42±0.02 78.65±0.03 181.07±0.04
    Weissenberger[19] 102.61 78.42 181.03
    Henschel[22] 102.58±1.15 78.67±0.60 181.25±1.30
    下载: 导出CSV
    Baidu
  • [1]

    Lemaître J F, Goriely S, Hilaire S, Sida J L 2019 Phys. Rev. C 99 034612Google Scholar

    [2]

    Talou P, Stetcu I, Jaffke P, Rising M E, Lovell A E, Kawano T 2021 Comput. Phys. Commun. 269 108087Google Scholar

    [3]

    Scamps G, Simenel C 2018 Nature 564 382Google Scholar

    [4]

    Caamaño M, Farget F, Delaune O, Schmidt K H, Schmitt C, Audouin L, Bacri C O, Benlliure J, Casarejos E, Derkx X, Fernández-Domínguez B, Gaudefroy L, Golabek C, Jurado B, Lemasson A, Ramos D, Rodríguez-Tajes C, Roger T, Shrivastava A 2015 Phys. Rev. C 92 034606Google Scholar

    [5]

    Mariolopoulos G, Hamelin C, Blachot J, Bocquet J P, Brissot R, Crançon J, Nifenecker H, Ristori C 1981 Nucl. Phys. A 361 213Google Scholar

    [6]

    Lang W, Clerc H G, Wohlfarth H, Schrader H, Schmidt K H 1980 Nucl. Phys. A 345 34Google Scholar

    [7]

    Wang T F, Li G W, Zhu L P, Hen O, Zhang G L, Meng Q H, Wang L M, Han H Y, Xia H H 2017 Phys. Rev. C 96 034611Google Scholar

    [8]

    Knitter H H, Hambsch F J, Budtz-Jørgensen C 1992 Nucl. Phys. A 536 221Google Scholar

    [9]

    Boucheneb N, Asghar M, Barreau G, Doan T P, Leroux B, Sicre A, Geltenbort P, Oed A 1991 Nucl. Phys. A 535 77Google Scholar

    [10]

    Glendenin L E, Griffin H C 1965 Phys. Lett. 15 153Google Scholar

    [11]

    Kapoor S S, Bowman H R, Thompson S G 1965 Phys. Rev. 140 B1310Google Scholar

    [12]

    Reisdorf W, Unik J P, Griffin H C, Glendenin L E 1971 Nucl. Phys. A 177 337Google Scholar

    [13]

    Griffin H C 1990 J. Radioanal. Nucl. Chem. 142 279Google Scholar

    [14]

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese) [刘世龙, 杨毅, 李霞, 姜文刚, 韩洪银, 张春利 2017 原子能科学技术 51 343]Google Scholar

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese)Google Scholar

    [15]

    Algutifan N J, Sherman S R, Alexander C W 2015 Appl. Radiat. Isot. 96 135Google Scholar

    [16]

    Bé M M, Chechev V P, Dersch R, Helene O A, Helmer R G, Herman M, Hlaváč S, Marcinkowski A, Molnár G L, Nichols A L, Schönfeld E, Vanin V R, Woods M J 2007 Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications (Vol. 2) (Vienna: IAEA) p50

    [17]

    Tovesson F, Hambsch F J, Oberstedt S, Bax H 2002 J. Nucl. Sci. Technol. 39 673

    [18]

    Schmitt H W, Kiker W E, Williams C W 1965 Phys. Rev. 137 B837Google Scholar

    [19]

    Weissenberger E, Geltenbort P, Oed A, Gönnenwein F, Faust H 1986 Nucl. Instrum. Methods A 248 506Google Scholar

    [20]

    Waldo R W, Karam R A, Meyer R A 1981 Phys. Rev. C 23 1113Google Scholar

    [21]

    Schmidt K H, Jurado B, Amouroux C, Schmitt C 2016 Nucl. Data Sheets 131 107Google Scholar

    [22]

    Henschel H, Kohnle A, Hipp H, Gönnenwein G 1981 Nucl. Instrum. Methods 190 125Google Scholar

    [23]

    Rao M N, Biswas D C, Choudhury R K 1990 Nucl. Instrum. Methods B 51 102Google Scholar

    [24]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [25]

    Dolce S R, Gibson W M, Thomas T D 1969 Phys. Rev. 180 1177Google Scholar

    [26]

    Glendenin L E, Unik J P 1965 Phys. Rev. 140 B1301Google Scholar

    [27]

    Hopkins F F, White J R, Phillips G W, Moore C F, Richard P 1972 Phys. Rev. C 5 1015Google Scholar

    [28]

    Laurent R S, Phillips G W, Richard P, Moore C F 1971 Phys. Rev. C 4 1948Google Scholar

    [29]

    Hambsch F J, Oberstedt S 1997 Nucl. Phys. A 617 347Google Scholar

    [30]

    Böckstiegel C, Steinhäuser S, Schmidt K H, Clerc H G, Grewe A, Heinz A, de Jong M, Junghans A R, Müller J, Voss B 2008 Nucl. Phys. A 802 12Google Scholar

    [31]

    Chemey A, Pica A, Yao L, Loveland W, Lee H Y, Kuvin S A 2020 Eur. Phys. J. A 56 1Google Scholar

  • [1] 张鑫源, 胡以华, 谌诗洋, 方佳节, 王一程, 刘一凡, 韩飞. 公里级激光反射层析实验和碎片质心估计.  , 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205
    [2] 刘昌奇, 霍东英, 韩超, 吴康, 刘兴宇, 杨旭, 白晓厚, 王俊润, 张宇, 姚泽恩, 韦峥. 中子诱发232Th裂变初始碎片质量及动能分布Monte-Carlo研究.  , 2022, 71(1): 012501. doi: 10.7498/aps.71.20211333
    [3] 郑建东, 周江, 皮晓丽, 邹晨, 李一帆, 徐坤博, 龚自正, 胡帼杰. 空间碎片超高速撞击下太阳电池阵伏安特性.  , 2021, 70(18): 188801. doi: 10.7498/aps.70.20210458
    [4] 彭国良, 张俊杰. 基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟.  , 2021, 70(18): 180703. doi: 10.7498/aps.70.20210347
    [5] 刘昌奇, 韦峥. 中子诱发232Th裂变初始碎片质量及动能分布Monte-Carlo研究.  , 2021, (): . doi: 10.7498/aps.70.20211333
    [6] 孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬. 基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验.  , 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [7] 李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙. 微小空间碎片撞击发光信号监测及应用研究.  , 2014, 63(12): 129601. doi: 10.7498/aps.63.129601
    [8] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究.  , 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [9] 蔡明辉, 吴逢时, 李宏伟, 韩建伟. 空间微小碎片超高速撞击诱发的等离子体特性研究.  , 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [10] 李宏伟, 韩建伟, 蔡明辉, 吴逢时. 微小空间碎片撞击诱发放电效应研究.  , 2013, 62(22): 229601. doi: 10.7498/aps.62.229601
    [11] 杨斌, 牛胜利, 朱金辉, 黄流兴. 高空核爆炸碎片云早期扩展规律研究.  , 2012, 61(20): 202801. doi: 10.7498/aps.61.202801
    [12] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [13] 高著秀, 李宏伟, 蔡明辉, 刘丹秋, 黄建国, 韩建伟. 超高速空间微小碎片撞击充电材料诱发的放电.  , 2012, 61(3): 039601. doi: 10.7498/aps.61.039601
    [14] 黄建国, 刘丹秋, 高著秀, 李宏伟, 蔡明辉, 韩建伟. 空间微小碎片累积撞击损伤效应加速模拟研究.  , 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [15] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器.  , 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [16] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱.  , 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [17] 石 勇, 李奇峰, 汪 华, 戴静华, 刘世林, 马兴孝. 由飞行时间质谱峰形获取光解碎片平动能分布.  , 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [18] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究.  , 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [19] 法伟, 罗成林. 硅团簇结构和碎片行为的紧束缚理论方法.  , 2000, 49(3): 430-434. doi: 10.7498/aps.49.430
    [20] 李泽清, 黄胜年, 卓益忠, 喻传赞. 裂变碎块的电荷分布与碎块动能.  , 1966, 22(2): 245-249. doi: 10.7498/aps.22.245
计量
  • 文章访问数:  1328
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-06-01
  • 上网日期:  2024-06-05
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map