Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An empirical formula of nuclear β-decay half-lives

Xia Jin-Ge Li Wei-Feng Fang Ji-Yu Niu Zhong-Ming

Citation:

An empirical formula of nuclear β-decay half-lives

Xia Jin-Ge, Li Wei-Feng, Fang Ji-Yu, Niu Zhong-Ming
PDF
HTML
Get Citation
  • Nuclear β-decay half-lives play an important role not only in nuclear physics, but also in astrophysics. The β-decay half-lives of many nuclei involved in the astrophysical rapid neutron-capture (r -process) still cannot be measured experimentally, so the theoretical predictions of nuclear β-decay half-lives are inevitable for r-process studies. Theoretical models for studying the nuclear β-decay half-lives include the empirical formula, the gross theory, the quasiparticle random phase approximation (QRPA), and the shell model. Compared with other theoretical models of β-decay half-lives, the empirical formula has high computational efficiency, and its prediction accuracy can be improved by introducing more and more physical information. In this work, an empirical formula without free parameters is proposed to calculate the nuclear β-decay half-lives based on the Fermi theory of β decay. By including the pairing effect, the shell effect, and the isospin dependence, the newly proposed empirical formula significantly improves the accuracy of predicting the nuclear β-decay half-life. For the nuclei with half-lives less than 1 second, the root-mean-square deviation of the common logarithms of the nuclear β-decay half-life predicted by the new empirical formula from the experimental data decreases to 0.220, which is improved by about 54% compared with that by the empirical formula without free parameters, even better than those by other existing empirical formulas and microscopic QRPA approaches. In the unknown region, the nuclear β-decay half-lives predicted by the new empirical formula are generally shorter than those predicted by the microscopic models in the light nuclear region, while those predicted by the new empirical formula in the heavy nuclear region are generally in agreement with those predicted by the microscopic models. The half-lives of neutron-rich nuclei on the nuclear chart are then predicted by the new empirical formula, providing nuclear β-decay half-life inputs for the r-process simulations.
      Corresponding author: Niu Zhong-Ming, zmniu@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375109, 11875070, 11935001) and the Key Research Foundation of Education Ministry of Anhui Province, China (Grant No. 2023AH050095).
    [1]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [2]

    Thielemann F K, Arcones A, Käappeli R, Liebendrfer M, Rauscher T, Winteler C, Fröhlichb C, Dillmannc I, Fischer T, Martinez-Pinedoc G, Langanke K, Farouqi K, Kratz K L, Panov I, Korneev I K 2011 Prog. Part. Nucl. Phys. 66 346Google Scholar

    [3]

    Cowan J J, Thielemann F K, Truran J W 1991 Phys. Rep. 208 267Google Scholar

    [4]

    Qian Y Z 2003 Prog. Part. Nucl. Phys. 50 153Google Scholar

    [5]

    Arnould M, Goriely S, Takahashi K 2007 Phys. Rep. 450 97Google Scholar

    [6]

    Chen J, Fang J Y, Hao Y W, Niu Z M, Niu Y F 2023 Astrophys. J. 943 102Google Scholar

    [7]

    Mumpower M R, Surmana R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86Google Scholar

    [8]

    Li Z, Niu Z M, Sun B H 2019 Sci. China. Phys. Mech. Astron. 62 982011Google Scholar

    [9]

    Niu Z, Sun B, Meng J 2009 Phys. Rev. C 80 065806Google Scholar

    [10]

    Surman R, Engel J, Bennett J R, Meyer B S 1997 Phys. Rev. Lett. 79 1809Google Scholar

    [11]

    Zhang X P, Ren Z Z 2006 Phys. Rev. C 73 014305Google Scholar

    [12]

    Zhang X P, Ren Z Z, Zhi Q J, Zheng Q 2007 J. Phys. G: Nucl. Part. Phys. 34 2611Google Scholar

    [13]

    Zhou Y, Li Z H, Wang Y B, Chen Y S, Guo B, Su J, Li Y J, Yan S Q, Li X Y, Han Z Y, Shen Y P, Gan L, Zeng S, Lian G, Liu W P 2017 Sci. China-Phys. Mech. Astron. 60 082012Google Scholar

    [14]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470Google Scholar

    [15]

    Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84 641Google Scholar

    [16]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521Google Scholar

    [17]

    Koura H, Chiba S 2017 Phys. Rev. C 95 064304Google Scholar

    [18]

    Engel J, Bender M, Dobaczewski J, Surman R 1999 Phys. Rev. C 60 014302Google Scholar

    [19]

    Minato F, Bai C L 2013 Phys. Rev. Lett. 110 122501Google Scholar

    [20]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [21]

    Borzov I N, Goriely S 2000 Phys. Rev. C 62 035501Google Scholar

    [22]

    Langanke K, Martínez-Pinedo G 2003 Rev. Mod. Phys. 75 819Google Scholar

    [23]

    Martínez-Pinedo G, Langanke K 1999 Phys. Rev. Lett. 83 4502Google Scholar

    [24]

    Suzuki T, Yoshida T, Kajino T, Otsuka T 2012 Phys. Rev. C 85 015802Google Scholar

    [25]

    Zhi Q, Caurier E, Cuenca-García J J, Langanke K, Martínez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803Google Scholar

    [26]

    Möller P, Pfeiffer B, Kratz K L 2003 Phys. Rev. C 67 055802Google Scholar

    [27]

    Minato F, Niu Z, Liang H 2022 Phys. Rev. C 106 024306Google Scholar

    [28]

    Marketin T, Huther L, Martinez-Pinedo G 2016 Phys. Rev. C 93 025805Google Scholar

    [29]

    Niu Z M, Niu Y F, Liu Q, Liang H Z, Guo J Y 2013 Phys. Rev. C 87 051303Google Scholar

    [30]

    Wang Z Y, Niu Y F, Niu Z M, Guo J Y 2016 J. Phys. G: Nucl. Part. Phys. 43 045108Google Scholar

    [31]

    Nakatsukasa T, Inakura T, Yabana K 2007 Phys. Rev. C 76 024318Google Scholar

    [32]

    Liang H Z, Nakatsukasa T, Niu Z M, Meng J 2013 Phys. Rev. C 87 054310Google Scholar

    [33]

    Ney E M, Engel J, Li T, Schunck N 2020 Phys. Rev. C 102 034326Google Scholar

    [34]

    Mustonen M T, Engel J 2016 Phys. Rev. C 93 014304Google Scholar

    [35]

    Endo F, Koura H 2019 Phys. Rev. C 99 034303Google Scholar

    [36]

    Fang J Y, Chen J, Niu Z M 2022 Phys. Rev. C 106 054318Google Scholar

    [37]

    Sargent B W 1933 Proc. R. Soc. Lond. A 139 659Google Scholar

    [38]

    Shi M, Fang J Y, Niu Z M 2021 Chin. Phys. C 45 044103Google Scholar

    [39]

    Uyen N K, Chae K Y, Duy N N, Ly N D 2022 J. Phys. G: Nucl. Part. Phys. 49 025201Google Scholar

    [40]

    Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [41]

    Fermi E 1934 Z. Phys. 88 161Google Scholar

    [42]

    Wang N, Liu M, Wu X, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [43]

    Möller P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

  • 图 1  表1均方根偏差$\sigma_{\rm{rms}}(\lg T_{1/2})$的柱状图

    Figure 1.  Bar figure of the rms deviations $\sigma_{\rm{rms}}(\lg T_{1/2})$ in Table 1

    图 2  经验公式${\rm F}_1$, ${\rm F}_2$, ${\rm F}_3$, ${\rm F}_Z$的预测结果与实验数据的对数差随质子数Z和中子数N的变化. 竖线对应质子幻数$ Z=8, $$ 20, 28, 50, 82 $和中子幻数$ N=8, 20, 28, 50, 82, 126 $

    Figure 2.  Logarithmic differences between the predictions by the empirical formulas ${\rm F}_1$, ${\rm F}_2$, ${\rm F}_3$, ${\rm F}_Z$ and the experimental data as the functions of proton number Z and neutron number N. The vertical lines correspond to the proton magic numbers $ Z=8, 20, 28, 50, 82 $ and the neutron magic numbers $ N=8, 20, 28, 50, 82, 126 $

    图 3  经验公式${\rm F}_1$, ${\rm F}_2$, ${\rm F}_3$, ${\rm F}_Z$的预测结果与实验数据的对数差

    Figure 3.  Logarithmic differences between the predictions by the empirical formulas ${\rm F}_1$, ${\rm F}_2$, ${\rm F}_3$, ${\rm F}_Z$ and the experimental data

    图 4  ${\rm F}_1$, ${\rm F}_2$, ${\rm F}_3$预测的Ni, Sn, Pb同位素的$\beta$衰变寿命, 及其与${\rm F}_Z$计算结果的比较

    Figure 4.  Nuclear $\beta$-decay half-lives of Ni, Sn and Pb isotopes predicted by the ${\rm F}_1$, ${\rm F}_2$ and ${\rm F}_3$, and their comparison with ${\rm F}_Z$ calculations

    图 5  图4一样, 但对应$N = 50$, $N = 82$, $N = 126$同中子素链

    Figure 5.  Same to Fig. 4, but for $N = 50$, $N = 82$, and $N = 126$ isotones

    图 6  公式${\rm F}_3$预测的Zn, Zr, Sn, Nd, Pb同位素的$\beta$衰变寿命, 及其与FRDM + QRPA, HFB + FAM, HFB + QRPA理论结果的比较

    Figure 6.  Nuclear $\beta$-decay half-lives of Zn, Zr, Sn, Nd and Pb isotopes predicted by formula ${\rm F}_3$, and the comparison with the theoretical results of FRDM + QRPA, HFB + FAM and HFB + QRPA models

    图 7  公式${\rm F}_3$预言的原子核$\beta$衰变寿命

    Figure 7.  Nuclear $\beta$-decay half-lives predicted by formula ${\rm F}_3$

    表 1  经验公式${\rm F}_1$, ${\rm F}_2$, ${\rm F}_3$和${\rm F}_Z$预言的原子核衰变寿命的对数与实验数据的均方根偏差$\sigma_{\rm{rms}}(\lg T_{1/2})$, 其中第2—4列分别对应$T_{1/2}< 10^6\ {\rm{s}}$, $T_{1/2}< 10^3\ {\rm{s}}$和$T_{1/2}< 1\ {\rm{s}}$的原子核数据集

    Table 1.  The rms deviations $\sigma_{\rm{rms}}(\lg T_{1/2})$ of the logarithms of nuclear $\beta$-decay half-lives predicted by the empirical formulas ${\rm F}_1$, ${\rm F}_2$, ${\rm F}_3$, and ${\rm F}_Z$ with respective to the experimental data, where the 2nd–4th columns represent the data sets for nuclei with $T_{1/2}< 10^6\ {\rm{s}}$, $T_{1/2}< 10^3\ {\rm{s}}$, and $T_{1/2}< 1\ {\rm{s}}$, respectively

    Formula $ T_{1/2}< {10^6 \; {\rm{s}}}$ $T_{1/2}< {10^3 \; {\rm{s}}}$ $T_{1/2}< {1 \; {\rm{s}}}$
    ${\rm F}_1$ 1.096 0.732 0.478
    ${\rm F}_2$ 0.688 0.490 0.279
    ${\rm F}_3$ 0.609 0.403 0.220
    ${\rm F}_Z$ 0.664 0.408 0.221
    DownLoad: CSV
    Baidu
  • [1]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [2]

    Thielemann F K, Arcones A, Käappeli R, Liebendrfer M, Rauscher T, Winteler C, Fröhlichb C, Dillmannc I, Fischer T, Martinez-Pinedoc G, Langanke K, Farouqi K, Kratz K L, Panov I, Korneev I K 2011 Prog. Part. Nucl. Phys. 66 346Google Scholar

    [3]

    Cowan J J, Thielemann F K, Truran J W 1991 Phys. Rep. 208 267Google Scholar

    [4]

    Qian Y Z 2003 Prog. Part. Nucl. Phys. 50 153Google Scholar

    [5]

    Arnould M, Goriely S, Takahashi K 2007 Phys. Rep. 450 97Google Scholar

    [6]

    Chen J, Fang J Y, Hao Y W, Niu Z M, Niu Y F 2023 Astrophys. J. 943 102Google Scholar

    [7]

    Mumpower M R, Surmana R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86Google Scholar

    [8]

    Li Z, Niu Z M, Sun B H 2019 Sci. China. Phys. Mech. Astron. 62 982011Google Scholar

    [9]

    Niu Z, Sun B, Meng J 2009 Phys. Rev. C 80 065806Google Scholar

    [10]

    Surman R, Engel J, Bennett J R, Meyer B S 1997 Phys. Rev. Lett. 79 1809Google Scholar

    [11]

    Zhang X P, Ren Z Z 2006 Phys. Rev. C 73 014305Google Scholar

    [12]

    Zhang X P, Ren Z Z, Zhi Q J, Zheng Q 2007 J. Phys. G: Nucl. Part. Phys. 34 2611Google Scholar

    [13]

    Zhou Y, Li Z H, Wang Y B, Chen Y S, Guo B, Su J, Li Y J, Yan S Q, Li X Y, Han Z Y, Shen Y P, Gan L, Zeng S, Lian G, Liu W P 2017 Sci. China-Phys. Mech. Astron. 60 082012Google Scholar

    [14]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470Google Scholar

    [15]

    Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84 641Google Scholar

    [16]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521Google Scholar

    [17]

    Koura H, Chiba S 2017 Phys. Rev. C 95 064304Google Scholar

    [18]

    Engel J, Bender M, Dobaczewski J, Surman R 1999 Phys. Rev. C 60 014302Google Scholar

    [19]

    Minato F, Bai C L 2013 Phys. Rev. Lett. 110 122501Google Scholar

    [20]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [21]

    Borzov I N, Goriely S 2000 Phys. Rev. C 62 035501Google Scholar

    [22]

    Langanke K, Martínez-Pinedo G 2003 Rev. Mod. Phys. 75 819Google Scholar

    [23]

    Martínez-Pinedo G, Langanke K 1999 Phys. Rev. Lett. 83 4502Google Scholar

    [24]

    Suzuki T, Yoshida T, Kajino T, Otsuka T 2012 Phys. Rev. C 85 015802Google Scholar

    [25]

    Zhi Q, Caurier E, Cuenca-García J J, Langanke K, Martínez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803Google Scholar

    [26]

    Möller P, Pfeiffer B, Kratz K L 2003 Phys. Rev. C 67 055802Google Scholar

    [27]

    Minato F, Niu Z, Liang H 2022 Phys. Rev. C 106 024306Google Scholar

    [28]

    Marketin T, Huther L, Martinez-Pinedo G 2016 Phys. Rev. C 93 025805Google Scholar

    [29]

    Niu Z M, Niu Y F, Liu Q, Liang H Z, Guo J Y 2013 Phys. Rev. C 87 051303Google Scholar

    [30]

    Wang Z Y, Niu Y F, Niu Z M, Guo J Y 2016 J. Phys. G: Nucl. Part. Phys. 43 045108Google Scholar

    [31]

    Nakatsukasa T, Inakura T, Yabana K 2007 Phys. Rev. C 76 024318Google Scholar

    [32]

    Liang H Z, Nakatsukasa T, Niu Z M, Meng J 2013 Phys. Rev. C 87 054310Google Scholar

    [33]

    Ney E M, Engel J, Li T, Schunck N 2020 Phys. Rev. C 102 034326Google Scholar

    [34]

    Mustonen M T, Engel J 2016 Phys. Rev. C 93 014304Google Scholar

    [35]

    Endo F, Koura H 2019 Phys. Rev. C 99 034303Google Scholar

    [36]

    Fang J Y, Chen J, Niu Z M 2022 Phys. Rev. C 106 054318Google Scholar

    [37]

    Sargent B W 1933 Proc. R. Soc. Lond. A 139 659Google Scholar

    [38]

    Shi M, Fang J Y, Niu Z M 2021 Chin. Phys. C 45 044103Google Scholar

    [39]

    Uyen N K, Chae K Y, Duy N N, Ly N D 2022 J. Phys. G: Nucl. Part. Phys. 49 025201Google Scholar

    [40]

    Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [41]

    Fermi E 1934 Z. Phys. 88 161Google Scholar

    [42]

    Wang N, Liu M, Wu X, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [43]

    Möller P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

  • [1] Chen Ze, Zhang Xiao-Ping, Yang Hong-Ying, Zheng Qiang, Chen Na-Na, Zhi Qi-Jun. β--decay half-lives for waiting point nucleiaround N=82. Acta Physica Sinica, 2014, 63(16): 162301. doi: 10.7498/aps.63.162301
    [2] Liu Zhi-Wei, Bao Wei-Min, Li Xiao-Ping, Liu Dong-Lin. A segmentation calculation method for plasma collision frequency considering the electro-magnetic wave driving effect. Acta Physica Sinica, 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [3] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [4] Zhang Bing-Xin, Liu Xiao-Jing, Zhang Bai-Jun, Hua Zhong, Xiao Li, Liu Bing, Wu Yi-Heng, Wang Qing-Cai, Wang Yan. Research on branching ratio of B0→π-l+ν l decay. Acta Physica Sinica, 2011, 60(4): 041301. doi: 10.7498/aps.60.041301
    [5] Wang Wen-Fang, Chen Ke, Wu Jing-Da, Wen Jin-Hui, Lai Tian-Shu. Influence of long lifetime absorption process on the measurement of ultrafast carrier dynamics. Acta Physica Sinica, 2011, 60(11): 117802. doi: 10.7498/aps.60.117802
    [6] Li Ming-Jie, Wu Ye, Liu Wei-Qing, Xiao Jing-Hua. Short message spreading in complex networks and longevity of short message. Acta Physica Sinica, 2009, 58(8): 5251-5258. doi: 10.7498/aps.58.5251
    [7] Wang Xiang-Li, Dong Chen-Zhong, Sang Cui-Cui. Theoretical study on Ne 1s photoionization and corresponding Auger decay processes. Acta Physica Sinica, 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [8] Lu Gong-Ru, Li Xiang, Li Pei-Ying. Probing R-parity violating interactions from top quark polarization at LHC. Acta Physica Sinica, 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [9] Wu Xiang-Yao, Gong Pi-Feng, Su Xi-Yu, Liu Xiao-Jing, Fan Xi-Hui, Wang Li, Shi Zong-Hua, Guo Yi-Qing. Research on D→Klv~l decay. Acta Physica Sinica, 2006, 55(7): 3375-3379. doi: 10.7498/aps.55.3375
    [10] Wu Xiang-Yao, Yin Xin-Guo, Guo Yi-Qing, Zhang Xiao-Bo, Yin Jian-Hua, Xie Yuan-Liang. Research on B0→K0π0 decay. Acta Physica Sinica, 2004, 53(4): 1015-1019. doi: 10.7498/aps.53.1015
    [11] CAO XIAO-WEN. AN EMPIRICAL EXPRESSION OF TRANSITION TEMPERATURE Tc FOR AMORPHOUS SUPERCONDUCTORS. Acta Physica Sinica, 1985, 34(5): 706-708. doi: 10.7498/aps.34.706
    [12] XIE YU-ZHANG, RUAN LI-ZHEN. MEASUREMENT OF THE PITCH OF A MBBA-CC MIXTURE AND AN EMPIRICAL FORMULA FOR THE TEMPERA-TURE DEPENDENCE OF THE PITCH OF CHOLESTERICS. Acta Physica Sinica, 1984, 33(7): 1031-1036. doi: 10.7498/aps.33.1031
    [13] WANG XIAO-GUANG, LI XIAO-LIN, ZHAO PEI-YING, CHENG XI-YOU. ELECTROMAGNETIC DECAY OF NEW PARTICLES AND THE PROPERTIES OF STRATONS. Acta Physica Sinica, 1977, 26(6): 526-530. doi: 10.7498/aps.26.526
    [14] LI XIAO-LIN, WANG JIA-JUN, WANG XIAO-GUANG. ANALYSIS ON THE DECAY PROCESSES OF THE NEW PARTICLE J(3095). Acta Physica Sinica, 1977, 26(1): 1-8. doi: 10.7498/aps.26.1
    [15] HE ZUO-XIU, HUANG TAO. FIELD-CURRENT IDENTITY AND DECAY OF THE PROCESS π+→e++v+γ. Acta Physica Sinica, 1976, 25(5): 409-414. doi: 10.7498/aps.25.409
    [16] . Acta Physica Sinica, 1966, 22(4): 503-506. doi: 10.7498/aps.22.503
    [17] TZU PAO-RU. ON THE DECAY BRANCH RATIO OF THE UNSTABLE PARTICLE η:R((η→ππγ)/(η→3π)). Acta Physica Sinica, 1965, 21(1): 92-102. doi: 10.7498/aps.21.92
    [18] . Acta Physica Sinica, 1964, 20(7): 680-681. doi: 10.7498/aps.20.680
    [19] CHEN, J. M., HO, T.H., SAN, D. C., TZU, H. Y.. ON THE BRANCHING RATIOS OF THE DECAYS OE THE HYPERONS AND THE RATIOS OE THE MEAN LIFE TIMES. Acta Physica Sinica, 1959, 15(2): 63-76. doi: 10.7498/aps.15.63
    [20] NING HU, MIN YU. ON THE THEORY OF BETA-DISINTEGRATION. Acta Physica Sinica, 1951, 8(3): 260-269. doi: 10.7498/aps.8.260
Metrics
  • Abstract views:  2239
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2023
  • Accepted Date:  08 December 2023
  • Available Online:  03 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回
Baidu
map