Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband laser driven near-forward scattering light of planar film target

Long Xin-Yu Xiong Jun An Hong-Hai Xie Zhi-Yong Wang Pei-Pei Fang Zhi-Heng Wang Wei Sun Jin-Ren Wang Chen

Citation:

Broadband laser driven near-forward scattering light of planar film target

Long Xin-Yu, Xiong Jun, An Hong-Hai, Xie Zhi-Yong, Wang Pei-Pei, Fang Zhi-Heng, Wang Wei, Sun Jin-Ren, Wang Chen
cstr: 32037.14.aps.73.20240823
PDF
HTML
Get Citation
  • Laser-plasma instability (LPI) is one of the key problems in the ignition process of inertial confinement fusion (ICF), and has been extensively studied in theory, simulation, and experiment for many years. Broadband laser, due to its low temporal coherence, can reduce the effective electric field strength when interacting with plasma and disrupt the phase-matching conditions of LPI, thus an effective approach to solving LPI issues is considered. Current extensive simulation studies indicate that broadband laser can suppress the generation of phenomena such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), and two-plasmon decay (TPD) to some extent. There are also a few backward scattering experimental studies, but more experimental researches, such as side-scattering, are still needed. Therefore, based on the broadband second harmonic laser facility “Kunwu”, the experiments are designed for studying the lateral scattering of critical density plasma driven by broadband laser and traditional narrowband laser, and the production of hot electrons as well in this work. The experimental results show that the side SBS spectra and side SRS spectra and portions at different angles excited by broadband lasers with a power density of 1×1015 W/cm2 are significantly different from those by narrowband lasers. Further analysis reveals that the overall portion of transverse hot electrons in broadband laser cases is higher than that in narrowband laser case. However, for broadband laser, the portion of SRS at small forward angle and backward angle are significantly lower than that for narrowband laser. Preliminary qualitative analysis suggests that SRS may not be the main mechanism for hot electron generation in this case, and that PDI might play a dominant role in generating hot electrons.
      Corresponding author: Sun Jin-Ren, sunjinren@263.net ; Wang Chen, wangch@mail.shcnc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074353, 12075227).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龚韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang L Y, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [3]

    MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [4]

    Montgomery D S, Afeyan B B, Cobble J A, Fernandez J C, Wilke M D, Glenzer S H, Kirkwood R K, MacGowan B J, Moody J D, Lindman E L, Munro D H, Wilde B H, Rose H A, Dubois D F, Bezzerides B, Vu H X 1998 Phys. Plasmas 5 1973Google Scholar

    [5]

    Li C X, Dong L F, Feng J Y, Huang Y P, Sun H Y 2020 Rev. Sci Instrum. 91 026105Google Scholar

    [6]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar

    [7]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [8]

    Follett R K, Shaw J G, Myatt J F, Palastro J P, Short R W, Froula D H 2018 Phys. Rev. Lett. 120 135005Google Scholar

    [9]

    Bibeau C, Speck D R, Ehrlich R B, Laumann C W, Kyrazis D T, Henesian M A, Lawson J K, Perry M D, Wegner P J, Weiland T L 1992 Appl. Opt 31 5799Google Scholar

    [10]

    Dixit S N, Feit M D, Perry M D, Powell H T 1996 Opt. Lett 21 1715Google Scholar

    [11]

    Grun J, Emery M E, Manka C K, Lee T N, McLean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672Google Scholar

    [12]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’Humières E 2019 Phys. Plasmas 26 42707Google Scholar

    [13]

    Albright B, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002Google Scholar

    [14]

    Feng Q S, Liu Z J, Cao L H, Xiao C Z, Hao L, Zheng C Y, Ning C, He X T 2020 Nucl. Fusion 60 066012Google Scholar

    [15]

    Zhong Z Q, Li B, Xiong H, Li J W, Qiu J, Hao L, Zhang B 2021 Opt. Express 29 1304Google Scholar

    [16]

    Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H, Palastro J P 2019 Phys. Plasmas 26 062111Google Scholar

    [17]

    Thomson J J, Karush J I 1974 Phys. Fluids 17 1608Google Scholar

    [18]

    Gao Y Q, Cui Y, Ji L L, Rao D X, Zhao X H, Li F J, Liu D, Feng W, Xia L, Liu J N, Shi H T, Du P Y, Liu J, Li X L, Wang T, Zhang T X, Shan C, Hua Y L, Ma W X, Sun X, Chen X F, Huang X G, Zhu J A, Pei W B, Sui Z, Fu S Z 2020 Matter Radiat. Extrem. 5 065201Google Scholar

    [19]

    Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou S L, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [20]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar

    [21]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar

    [22]

    Yao C, Li J, Hao L, Yan R, Wang C, Lei A L, Ding Y K, Zheng J 2024 Nucl. Fusion 64 106013Google Scholar

  • 图 1  实验方案示意图

    Figure 1.  Sketch of the experimental setup.

    图 2  实验用靶示意图

    Figure 2.  Schematic diagram of the target.

    图 3  宽带激光与窄带激光驱动平面厚靶的25°近背向散射典型光谱

    Figure 3.  25° near back-scatter typical spectra driven by broadband laser and narrowband laser.

    图 4  宽带与窄带驱动平面厚靶的85°侧向散射典型光谱

    Figure 4.  85° side-scatter typical spectra driven by broadband laser and narrowband laser.

    图 5  宽带与窄带驱动平面厚靶的140°近前向散射典型光谱

    Figure 5.  140° near forward-scatter typical spectra driven by broadband laser and narrowband laser.

    图 6  不同角度的散射光能量份额 (a) SBS; (b) SRS

    Figure 6.  Energy information at different scattering measurement angles: (a) SBS; (b) SRS.

    图 7  不同角度的超热电子产生情况 (a)能谱图; (b) 份额图

    Figure 7.  Hot electrons at different scattering measurement angles: (a) Energy spectrum; (b) share chart.

    Baidu
  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龚韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang L Y, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [3]

    MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [4]

    Montgomery D S, Afeyan B B, Cobble J A, Fernandez J C, Wilke M D, Glenzer S H, Kirkwood R K, MacGowan B J, Moody J D, Lindman E L, Munro D H, Wilde B H, Rose H A, Dubois D F, Bezzerides B, Vu H X 1998 Phys. Plasmas 5 1973Google Scholar

    [5]

    Li C X, Dong L F, Feng J Y, Huang Y P, Sun H Y 2020 Rev. Sci Instrum. 91 026105Google Scholar

    [6]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar

    [7]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [8]

    Follett R K, Shaw J G, Myatt J F, Palastro J P, Short R W, Froula D H 2018 Phys. Rev. Lett. 120 135005Google Scholar

    [9]

    Bibeau C, Speck D R, Ehrlich R B, Laumann C W, Kyrazis D T, Henesian M A, Lawson J K, Perry M D, Wegner P J, Weiland T L 1992 Appl. Opt 31 5799Google Scholar

    [10]

    Dixit S N, Feit M D, Perry M D, Powell H T 1996 Opt. Lett 21 1715Google Scholar

    [11]

    Grun J, Emery M E, Manka C K, Lee T N, McLean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672Google Scholar

    [12]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’Humières E 2019 Phys. Plasmas 26 42707Google Scholar

    [13]

    Albright B, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002Google Scholar

    [14]

    Feng Q S, Liu Z J, Cao L H, Xiao C Z, Hao L, Zheng C Y, Ning C, He X T 2020 Nucl. Fusion 60 066012Google Scholar

    [15]

    Zhong Z Q, Li B, Xiong H, Li J W, Qiu J, Hao L, Zhang B 2021 Opt. Express 29 1304Google Scholar

    [16]

    Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H, Palastro J P 2019 Phys. Plasmas 26 062111Google Scholar

    [17]

    Thomson J J, Karush J I 1974 Phys. Fluids 17 1608Google Scholar

    [18]

    Gao Y Q, Cui Y, Ji L L, Rao D X, Zhao X H, Li F J, Liu D, Feng W, Xia L, Liu J N, Shi H T, Du P Y, Liu J, Li X L, Wang T, Zhang T X, Shan C, Hua Y L, Ma W X, Sun X, Chen X F, Huang X G, Zhu J A, Pei W B, Sui Z, Fu S Z 2020 Matter Radiat. Extrem. 5 065201Google Scholar

    [19]

    Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou S L, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [20]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar

    [21]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar

    [22]

    Yao C, Li J, Hao L, Yan R, Wang C, Lei A L, Ding Y K, Zheng J 2024 Nucl. Fusion 64 106013Google Scholar

  • [1] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [2] Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen. Near forward scattering light of planar film target driven by broadband laser. Acta Physica Sinica, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [3] Zhao Jia-Rui, Yu Quan-Zhi, Liang Tian-Jiao, Chen Li-Ming, Li Yu-Tong, Guo Cheng-Shan. Temperature diagnostic using photonuclear reactions for hot electrons in laserplasma interactions. Acta Physica Sinica, 2013, 62(7): 072501. doi: 10.7498/aps.62.072501
    [4] Yu Jin-Qing, Jin Xiao-Lin, Zhou Wei-Min, Li Bin, Gu Yu-Qiu. Heating mechanism of hot electrons in the interaction between laser and nanolayered target. Acta Physica Sinica, 2012, 61(22): 225202. doi: 10.7498/aps.61.225202
    [5] Liu Lan-Qin, Mo Lei, Luo Bin, Su Jing-Qin, Wang Wen-Yi, Wang Fang, Jing Feng, Wei Xiao-Feng. Amplification of hybrid-widen linewidth of broadband pulses in Nd:glass laser systems. Acta Physica Sinica, 2009, 58(6): 4307-4312. doi: 10.7498/aps.58.4307
    [6] Dong Xiao-Gang, Sheng Zheng-Ming, Chen Min, Zhang Jie. Numerical simulation of acceleration and radiation of surface electrons in the interaction of intense laser pulses with a solid target. Acta Physica Sinica, 2008, 57(12): 7423-7429. doi: 10.7498/aps.57.7423
    [7] Monte Carlo simulation of Kα source produced by ultrashort and ultrahigh laser interaction with Cu target. Acta Physica Sinica, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [8] Liu Wei, Fan Rong-Wei, Li Xiao-Hui, Chen Hui, Xia Yuan-Qin, Chen De-Ying. Properties of improved polymer host solid-state dye laser. Acta Physica Sinica, 2007, 56(9): 5276-5280. doi: 10.7498/aps.56.5276
    [9] Liu Lan-Qin, Su Jing-Qin, Luo Bin, Wang Wen-Yi, Jing Feng, Wei Xiao-Feng. Physical modeling of broadband pulsed laser amplification process based on hybrid-widened linewidth. Acta Physica Sinica, 2007, 56(11): 6749-6753. doi: 10.7498/aps.56.6749
    [10] Cai Da-Feng, Gu Yu-Qiu, Zheng Zhi-Jian, Zhou Wei-Min, Jiao Chun-Ye, Wen Tian-Shu, Chunyu Shu-Tai. A comparison of energy distribution of hot electrons from the front and the rear sides of targets during the interaction of femtosecond laser with foil targets. Acta Physica Sinica, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [11] Zheng Zhi-Yuan, Li Yu-Tong, Yuan Xiao-Hui, Xu Miao-Hua, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Effects of target thickness on emission direction of hot electrons generated from subrelativistic intensity laser pulses interacting with foil targets. Acta Physica Sinica, 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [12] Yuan Xiao-Hui, Li Yu-Tong, Xu Miao-Hua, Zheng Zhi-Yuan, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Ling Wei-Jun, Wei Zhi-Yi, Zhao Wei, Zhang Jie. Influence of laser incidence angle on hot electrons generated in the interaction of ultrashort intense laser pulses with foil target. Acta Physica Sinica, 2006, 55(11): 5899-5904. doi: 10.7498/aps.55.5899
    [13] Li Kun, Li Yu-Tong, Zhang Jun, Yuan Xiao-Hui, Xu Miao-Hua, Wang Zhao-Hua, Zhang Jie. Fast electrons generated from Al targets irradiated by polarized laser pulses. Acta Physica Sinica, 2006, 55(11): 5909-5916. doi: 10.7498/aps.55.5909
    [14] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [15] Wang Guang-Chang, Zheng Zhi-Jian, Yang Xiang-Dong, Gu Yu-Qiu, Liu Hong-Jie, Wen Tian-Shu, Ge Fang-Fang, Jiao Chun-Ye, Zhou Wei-Min, Zhang Shuang-Gen, Wang Xiang-Xian. Experimental study of optical emission from the rear surface in ultrashort ultra-intense laser interaction with solid targets. Acta Physica Sinica, 2005, 54(10): 4803-4807. doi: 10.7498/aps.54.4803
    [16] Gu Yu-Qiu, Cai Da-Feng, Zheng Zhi-Jian, Yang Xiang-Dong, Zhou Wei-Min, Jiao Chun-Ye, Chen Hao, Wen Tian-Shu, Chunyu Shu-Tai. Experimental study on energy distribution of the hot electrons generated by femtosecond laser interacting with solid targets. Acta Physica Sinica, 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
    [17] Peng Xiao-Yu, Zhang Jie, Jin Zhan, Liang Tian-Jiao, Zhong Jia-Yong, Wu Hui-Chun, Liu Yun-Quan, Wang Zhao-Hua, Chen Zheng-Lin, Sheng Zheng-Ming, Li Yu-Tong, Wei Zhi-Yi. Angular distribution of hot electrons emitted from ethanol droplets irradiated by ultrashort laser pulses. Acta Physica Sinica, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [18] Chen Zheng-Lin, Zhang Jie, Chen Li-Ming, Teng Hao, Dong Quan-Li, Zhao Li-Zeng, Wei Zhi-Yi. Absorption of femtosecond laser pulses in metallic and dielectric slabs. Acta Physica Sinica, 2003, 52(7): 1672-1675. doi: 10.7498/aps.52.1672
    [19] Zhang Jun, Zhang Jie, Chen Qing, Peng Lian-Mao, Cang Yu, Wang Huai-Bin, Zhong Jia-Yong. . Acta Physica Sinica, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [20] WANG JIE, YAO JIAN-QUAN, YU YI-ZHONG, WANG PENG, ZHANG FAN, WANG TAO. THEORY OF WIDE BANDWIDTH OPTICAL HARMONIC GENERATION BASED ON FREQUENCY MIXING. Acta Physica Sinica, 2001, 50(6): 1092-1096. doi: 10.7498/aps.50.1092
Metrics
  • Abstract views:  222
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2024
  • Accepted Date:  09 October 2024
  • Available Online:  28 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回
Baidu
map