-
When an incident high-energy heavy ion beam enters into solid material, the energy deposition density along the ion flight path can change the temperature and pressure of macroscopic target, and new material defects can be created under the high-pressure and high-density conditions. To accurately control the extreme state in material generated by heavy ion beam, it is necessary to conduct in-depth research on the energy deposition density of ions and ascertain the new potential defects in matter. Reported in this work is the new experiment conducted on the HIRFL-CSR at Lanzhou, with the extracted 264 MeV/u Xe36+ ion beams irradiating an LiF crystal target. The emission spectrum of the LiF is measured in-situ. Moreover, the crystal color is observed to vary along the ion path, and X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are used to observe the potential new phases at different positions of crystal through the target dissociation method. It is apparent that in No. 3-front a new phase around 52.6° is found in XRD result, which is believed to be LiF3 (LiF+F2) structural phase and appears in the Bragg peak region of Xe ions in LiF. Furthermore, to verify this result, a similar experiment is done by using a 430 MeV/u 84Kr26+ ion beam, and the stacked layered LiF target is analyzed after the irradiation. The XPS result shows more complex defects aggregating in the Bragg peak region of Kr ions in LiF at room temperature. In previous study, such complex defects were all created under high temperature conditions. We find that these complex defects can be produced around the Bragg peak region of ions in LiF at room temperature, resulting in a temporally high temperature and high pressure condition. This paper can provide some experimental evidences and references for the target material modification in heavy ion beam driven high-energy density physics research. -
Keywords:
- LiF crystal /
- heavy ion beam /
- energy density /
- color center
[1] Kang W, Du Y, Cao S, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112004Google Scholar
[2] Yang J, Chen Y, Shen G, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112011Google Scholar
[3] Matsubayashi M, Faenov A, Pikuz T, et al. 2011 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 651 90Google Scholar
[4] Perez A, Davenas J, Dupuy C H S 1976 Nucl. Instrum. Methods 132 219Google Scholar
[5] Wangts Z G, Dufourtt C, Paumiertt E, Toulemoude M 1994 J. Phys.: Condens. Matter 6 6733Google Scholar
[6] Perez A, Balanzat E, Dural J 1990 Phys. Rev. B 41 3943Google Scholar
[7] Trautmann C, Toulemonde M, Schwartz K, et al. 2000 Nucl. Instrum. Methods Phys. Res. Sec. B 164–165 365Google Scholar
[8] El-Said A S, Cranney M, Ishikawa N, et al. 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 218 492Google Scholar
[9] Müller A, Neumann R, Schwartz K, Trautmann C 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 146 393Google Scholar
[10] Toulemonde M, Assmann W, Trautmann C, Grüner F 2002 Phys. Rev. Lett. 88 057602Google Scholar
[11] Trautmann C, Schwartz K, Geiss O 1998 J. Appl. Phys. 83 3560Google Scholar
[12] Schwartz K, Trautmann C, Steckenreiter T, Geiß O, Krämer M 1998 Phys. Rev. B 58 11232Google Scholar
[13] Davidson A T, Schwartz K, Comins J D, Kozakiewicz A G, Toulemonde M, Trautmann C 2002 Phys. Rev. B 66 214102Google Scholar
[14] Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar
[15] Pikuz T, Faenov A, Fukuda Y, et al. 2012 Opt. Express 20 3424Google Scholar
[16] Lushchik A, Lushchik Ch, Schwartz K, et al. 2007 Phys. Rev. B 76 054114Google Scholar
[17] Thevenard P, Guiraud G, Dupuy C H S, Delaunay B 1977 Radiat. Eff. 32 83Google Scholar
[18] Knutsont D, Bray P J 1966 J. Phys. Chem. Solids. 27 147-161.Google Scholar
[19] Dauletbekova A, Schwartz K, Sorokin M V, et al. 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 359 53Google Scholar
[20] Ditter M, Becher M, Orth S, et al. 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 441 70Google Scholar
-
图 2 260 MeV/u的Xe36+ 离子轰击LiF晶体的在线发光光谱结果 (a)在线发光光谱的峰位分布; (b)不同辐射剂量下的光谱强度演化(其中p代表束流脉冲发次)
Figure 2. Luminescence spectrum of 260 MeV/u Xe36+ ion bombardment on LiF crystals: (a) The peak position distribution of the luminescence spectrum; (b) the spectral intensity evolution at different radiation doses (where p represents the number of beam pulses).
图 3 Xe36+辐照后的LiF样品图以及沿束流方向解离示意图, 图中箭头指向面即图4(a)相应的测试面(不代表实际测试位置, 测试位置位于每个切面中心变色处)
Figure 3. Diagram of LiF sample after irradiation with Xe36+ and schematic diagram of dissociation along the beam direction. The arrow in the figure points to the corresponding testing surface in Fig. 4(a) (which does not represent the actual testing position, and the testing position is located at the discoloration point at the center of each section).
-
[1] Kang W, Du Y, Cao S, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112004Google Scholar
[2] Yang J, Chen Y, Shen G, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112011Google Scholar
[3] Matsubayashi M, Faenov A, Pikuz T, et al. 2011 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 651 90Google Scholar
[4] Perez A, Davenas J, Dupuy C H S 1976 Nucl. Instrum. Methods 132 219Google Scholar
[5] Wangts Z G, Dufourtt C, Paumiertt E, Toulemoude M 1994 J. Phys.: Condens. Matter 6 6733Google Scholar
[6] Perez A, Balanzat E, Dural J 1990 Phys. Rev. B 41 3943Google Scholar
[7] Trautmann C, Toulemonde M, Schwartz K, et al. 2000 Nucl. Instrum. Methods Phys. Res. Sec. B 164–165 365Google Scholar
[8] El-Said A S, Cranney M, Ishikawa N, et al. 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 218 492Google Scholar
[9] Müller A, Neumann R, Schwartz K, Trautmann C 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 146 393Google Scholar
[10] Toulemonde M, Assmann W, Trautmann C, Grüner F 2002 Phys. Rev. Lett. 88 057602Google Scholar
[11] Trautmann C, Schwartz K, Geiss O 1998 J. Appl. Phys. 83 3560Google Scholar
[12] Schwartz K, Trautmann C, Steckenreiter T, Geiß O, Krämer M 1998 Phys. Rev. B 58 11232Google Scholar
[13] Davidson A T, Schwartz K, Comins J D, Kozakiewicz A G, Toulemonde M, Trautmann C 2002 Phys. Rev. B 66 214102Google Scholar
[14] Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar
[15] Pikuz T, Faenov A, Fukuda Y, et al. 2012 Opt. Express 20 3424Google Scholar
[16] Lushchik A, Lushchik Ch, Schwartz K, et al. 2007 Phys. Rev. B 76 054114Google Scholar
[17] Thevenard P, Guiraud G, Dupuy C H S, Delaunay B 1977 Radiat. Eff. 32 83Google Scholar
[18] Knutsont D, Bray P J 1966 J. Phys. Chem. Solids. 27 147-161.Google Scholar
[19] Dauletbekova A, Schwartz K, Sorokin M V, et al. 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 359 53Google Scholar
[20] Ditter M, Becher M, Orth S, et al. 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 441 70Google Scholar
Catalog
Metrics
- Abstract views: 1403
- PDF Downloads: 38
- Cited By: 0