-
Ultrafast spin dynamics is the study of the evolution of spin degrees of freedom on a time scale from picoseconds to attoseconds after being excited by an external field. With the development of laser technology, ultrafast spin dynamics has presented new opportunities for realizing ultrafast spintronic devices since 1996. However, despite decades of development, many aspects of femtosecond magnetism remain unclear. Understanding the parameters of these ultrafast spin dynamics processes requires experiments on an even faster timescale. Attosecond magnetism and the interaction of attosecond laser pulses with magnetic materials can reveal spin dynamics on a sub-femtosecond to attosecond time scale. In this review, we first introduce the significant research progress, including the mechanisms of ultrafast demagnetization, all-optical switching, ultrafast spin currents, and terahertz waves. Secondly, we analyze the problems in ultrafast spin dynamics, such as the unclear physical mechanisms of ultrafast demagnetization, the uncertain relationship between magnetic damping and ultrafast demagnetization time, and the unexplored anisotropic ultrafast demagnetization. Thirdly, we discuss the opportunities and challenges in attosecond magnetism. Finally, we analyze and discuss the future development and prospects of ultrafast spin dynamics.
-
Keywords:
- ultrafast spin dynamics /
- femtosecond magnetism /
- attosecond laser pulse /
- attosecond magnetism
[1] Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731
Google Scholar
[2] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901
Google Scholar
[3] Farle M 1998 Rep. Prog. Phys. 61 755
Google Scholar
[4] Kambersky V 1976 Czech. J. Phys. B 26 1366
Google Scholar
[5] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250
Google Scholar
[6] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601
Google Scholar
[7] Lambert C H, Mangin S, Varaprasad B S D C S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton E E 2014 Science 345 1337
Google Scholar
[8] Igarashi J, Zhang W, Remy Q, Diaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725
Google Scholar
[9] Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455
Google Scholar
[10] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
Google Scholar
[11] Ferray M, L'Huillier A, Li X F, Lomprk L A, Mainfray G, Manus C 1988 J. Phys. B-At. Mol. Opt. 21 L31
Google Scholar
[12] Nisoli M, Sansone G 2009 Prog. Quant. Electron. 33 17
Google Scholar
[13] Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schroder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Munzenberg M, Sharma S, Schultze M 2019 Nature 571 240
Google Scholar
[14] Li Y, Li Y, Liu Q, Xie Z K, Vetter E, Yuan Z, He W, Liu H L, Sun D L, Xia K, Yu W, Sun Y B, Zhao J J, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 103040
Google Scholar
[15] Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. Lett. 88 117601
Google Scholar
[16] Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149
Google Scholar
[17] Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190
Google Scholar
[18] Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509
Google Scholar
[19] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[20] Yang S A 2016 Spin 06 1640003
Google Scholar
[21] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178
Google Scholar
[22] Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509
Google Scholar
[23] Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871
Google Scholar
[24] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev Mod Phys 87 1213
Google Scholar
[25] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602
Google Scholar
[26] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
Google Scholar
[27] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801
Google Scholar
[28] Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
Google Scholar
[29] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[30] Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B Condens. Matter. 39 4828
Google Scholar
[31] Hashimoto S, Ochiai Y 1990 J. Magn. Magn. Mater. 88 211
Google Scholar
[32] Cheng Z H, He W, Zhang X Q, Sun D L, Du H F, Wu Q, Ye J, Fang Y P, Liu H L 2015 Chin. Phys. B 24 077505
Google Scholar
[33] Walowski J, Muller G, Djordjevic M, Munzenberg M, Klaui M, Vaz C A, Bland J A 2008 Phys. Rev. Lett. 101 237401
Google Scholar
[34] Radu I, Woltersdorf G, Kiessling M, Melnikov A, Bovensiepen U, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 117201
Google Scholar
[35] Guidoni L, Beaurepaire E, Bigot J Y 2002 Phys. Rev. Lett. 89 017401
Google Scholar
[36] Graves C E, Reid A H, Wang T, et al. 2013 Nat. Mater. 12 293
Google Scholar
[37] Bartelt A F, Comin A, Feng J, Nasiatka J R, Eimüller T, Ludescher B, Schütz G, Padmore H A, Young A T, Scholl A 2007 Appl. Phys. Lett. 90 162503
Google Scholar
[38] Li Y, Zhang W, Li N, Sun R, Tang J, Gong Z Z, Li Y, Yang X, Xie Z K, Gul Q, Zhang X Q, He W, Cheng Z H 2019 J. Phys. Condens. Mat. 31 305802
Google Scholar
[39] Zhang Q, Nurmikko A V, Miao G X, Xiao G, Gupta A 2006 Phys. Rev. B 74 064414
Google Scholar
[40] Muller G M, Walowski J, Djordjevic M, Miao G X, Gupta A, Ramos A V, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J, Thomas A, Hutten A, Reiss G, Moodera J S, Munzenberg M 2009 Nat. Mater. 8 56
Google Scholar
[41] Lu X Y, Lin Z Y, Pi H Q, Zhang T, Li G Q, Gong Y T, Yan Y, Ruan X Z, Li Y, Zhang H, Li L, He L, Wu J, Zhang R, Weng H M, Zeng C G, Xu Y B 2024 Nat. Commun. 15 2410
Google Scholar
[42] Lichtenberg T, Schippers C F, van Kooten S C P, Evers S G F, Barcones B, Guimarães M H D, Koopmans B 2022 2D Mater. 10 015008
Google Scholar
[43] Wu N, Zhang S J, Chen D Q, Wang Y X, Meng S 2024 Nat. Commun. 15 2804
Google Scholar
[44] Khela M, Da Browski M, Khan S, Keatley P S, Verzhbitskiy I, Eda G, Hicken R J, Kurebayashi H, Santos E J G 2023 Nat. Commun. 14 1378
Google Scholar
[45] Sun T, Zhou C, Jiang Z Z, Li X M, Qiu K, Xiao R C, Liu C X, Ma Z W, Luo X, Sun Y P, Sheng Z G 2021 2D Mater. 8 045040
Google Scholar
[46] Da Browski M, Guo S, Strungaru M, Keatley P S, Withers F, Santos E J G, Hicken R J 2022 Nat. Commun. 13 5976
Google Scholar
[47] Lee W J, Fernandez-Mulligan S, Tan H X, Yan C H, Guan Y D, Lee S H, Mei R B, Liu C X, Yan B H, Mao Z Q, Yang S L 2023 Nat. Phys. 19 950
Google Scholar
[48] Padmanabhan H, Stoica V A, Kim P K, Poore M, Yang T N, Shen X Z, Reid A H, Lin M F, Park S, Yang J, Wang H Y, Koocher N Z, Puggioni D, Georgescu A B, Min L J, Lee S H, Mao Z Q, Rondinelli J M, Lindenberg A M, Chen L Q, Wang X J, Averitt R D, Freeland J W, Gopalan V 2022 Adv. Mater. 34 2202841
Google Scholar
[49] Bartram F M, Leng Y C, Wang Y, Liu L, Chen X, Peng H, Li H, Yu P, Wu Y, Lin M L, Zhang J, Tan P H, Yang L 2022 npj Quantum. Mater. 7 84
Google Scholar
[50] Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. Condens. Matter. 26 103202
Google Scholar
[51] Atxitia U, Chubykalo-Fesenko O 2011 Phys. Rev. B 84 144414
Google Scholar
[52] Koopmans B, Ruigrok J J, Longa F D, de Jonge W J 2005 Phys. Rev. Lett. 95 267207
Google Scholar
[53] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fahnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259
Google Scholar
[54] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
Google Scholar
[55] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855
Google Scholar
[56] Schellekens A J, Kuiper K C, de Wit R R J C, Koopmans B 2014 Nat. Commun. 5 4333
Google Scholar
[57] Li N, Sun Y B, Sun R, Yang X, Zhang W, Xie Z K, Liu J N, Li Y, Li Y, Gong Z Z, Zhang X Q, He W, Cheng Z H 2022 Phys. Rev. B 105 144415
Google Scholar
[58] Hou Y S, Wu R Q 2019 Phys. Rev. Appl. 11 054032
Google Scholar
[59] Gong Z H, Zhang W, Liu J N, Xie Z K, Yang X, Tang J, Du H F, Li N, Zhang X Q, He W, Cheng Z H 2023 Phys. Rev. B 107 144429
Google Scholar
[60] Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16
Google Scholar
[61] Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug. Invent. Today 5 157
Google Scholar
[62] Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256
Google Scholar
[63] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
Google Scholar
[64] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
Google Scholar
[65] Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E 2008 Phys. Rev. Lett. 101 036601
Google Scholar
[66] Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L, Jaffres H 2014 Phys. Rev. Lett. 112 106602
Google Scholar
[67] Sun R, Yang S J, Yang X, Vetter E, Sun D L, Li N, Su L, Li Y, Li Y, Gong Z Z, Xie Z K, Hou K Y, Gul Q, He W, Zhang X Q, Cheng Z H 2019 Nano Lett. 19 4420
Google Scholar
[68] Sun R, Yang S J, Yang X, Kumar A, Vetter E, Xue W H, Li Y, Li N, Li Y, Zhang S H, Ge B H, Zhang X Q, He W, Kemper A F, Sun D, Cheng Z H 2020 Adv. Mater. 32 2005315
Google Scholar
[69] Qiu H S, Zhou L, Zhang C, Wu J, Tian Y, Cheng S, Mi S, Zhao H, Zhang Q, Wu D, Jin B, Chen J, Wu P 2020 Nat. Phys. 17 388
Google Scholar
[70] Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y, Cheng Z H 2018 Adv. Mater. 30 1706439
Google Scholar
[71] Kuiper K C, Roth T, Schellekens A J, Schmitt O, Koopmans B, Cinchetti M, Aeschlimann M 2014 Appl. Phys. Lett. 105 202402
Google Scholar
[72] Zhang G P, Hubner W 2000 Phys. Rev. Lett. 85 3025
Google Scholar
[73] Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P 2022 Nature 602 73
Google Scholar
[74] Ren Y, Zuo Y L, Si M S, Zhang Z Z, Jin Q Y, Zhou S M 2013 Ieee T. Magn. 49 3159
Google Scholar
[75] Zhang Z, Wu D, Luan Z, Yuan H, Zhang Z, Zhao J, Zhao H, Chen L 2015 IEEE Magn. Lett. 6 1
Google Scholar
[76] Woltersdorf G, Kiessling M, Meyer G, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 257602
Google Scholar
[77] Gilmore K, Stiles M D, Seib J, Steiauf D, Fahnle M 2010 Phys. Rev. B 81 174414
Google Scholar
[78] Xia H, Zhao Z R, Zeng F L, Zhao H C, Shi J Y, Zheng Z, Shen X, He J, Ni G, Wu Y Z, Chen L Y, Zhao H B 2021 Phys. Rev. B 104 024404
Google Scholar
[79] Zhang W, He W, Zhang X Q, Cheng Z H, Teng J, Fähnle M 2017 Phys. Rev. B 96 220415
Google Scholar
[80] Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412
Google Scholar
[81] Unikandanunni V, Medapalli R, Fullerton E E, Carva K, Oppeneer P M, Bonetti S 2021 Appl. Phys. Lett. 118 232404
Google Scholar
[82] Yang X, Qiu L, Li Y, Xue H P, Liu J N, Sun R, Yang Q L, Gai X S, Wei Y S, Comstock A H, Sun D, Zhang X Q, He W, Hou Y, Cheng Z H 2023 Phys. Rev. Lett. 131 186703
Google Scholar
[83] Waldrop M M 2016 Nature 530 144
Google Scholar
[84] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
Google Scholar
[85] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506
Google Scholar
[86] Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891
Google Scholar
[87] Midorikawa K 2022 Nat. Photonics 16 267
Google Scholar
[88] Xue B, Tamaru Y, Fu Y, Yuan H, Lan P, Mücke O D, Suda A, Midorikawa K, Takahashi E J 2020 Sci. Adv. 6 eaay2802
Google Scholar
[89] Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875
Google Scholar
[90] Corkum P B, Krausz F 2007 Nat. Phys. 3 381
Google Scholar
[91] Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822
Google Scholar
[92] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287
Google Scholar
[93] Li S, Wang R, Frauenheim T, He J 2024 J. Phys. Chem. Lett. 15 5959
Google Scholar
[94] Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62
Google Scholar
[95] Hofherr M, Häuser S, Dewhurst J K, Tengdin P, Sakshath S, Nembach H T, Weber S T, Shaw J M, Silva T J, Kapteyn H C, Cinchetti M, Rethfeld B, Murnane M M, Steil D, Stadtmüller B, Sharma S, Aeschlimann M, Mathias S 2020 Sci. Adv. 6 eaay8717
Google Scholar
[96] Ryan S a A, Johnsen P C, Elhanoty M F, Grafov A, Li N, Delin A, Markou A, Lesne E, Felser C, Eriksson O, Kapteyn H C, Grånäs O, Murnane M M 2023 Sci. Adv. 9 eadi1428
Google Scholar
[97] Tengdin P, Gentry C, Blonsky A, Zusin D, Gerrity M, Hellbrück L, Hofherr M, Shaw J, Kvashnin Y, Delczeg-Czirjak E K, Arora M, Nembach H, Silva T J, Mathias S, Aeschlimann M, Kapteyn H C, Thonig D, Koumpouras K, Eriksson O, Murnane M M 2020 Sci. Adv. 6 eaaz1100
Google Scholar
[98] Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M, Keller U 2015 Optica 2 405
Google Scholar
[99] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
Google Scholar
[100] Chainani A, Yokoya T, Kiss T, Shin S 2000 Phys. Rev. Lett. 85 1966
Google Scholar
[101] Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515
Google Scholar
-
图 1 超快自旋动力学不同时间区域 (a) Ni薄膜的超快退磁现象[5]; (b) 超快自旋动力学3个过程, I为超快退磁, II为磁矩恢复, III为磁矩进动[32]; (c) 激光与铁磁性金属相互作用的热力学库; (d) Ni的三温度模型得到的电子、晶格、自旋的温度变化[5]
Figure 1. Different time regimes of the ultrafast spin dynamics: (a) The ultrafast demagnetization of Ni thin film[5]; (b) the three-time regimes of Fe/MgO, I represents ultrafast demagnetization, II represents magnetic moment recovery, and III represents magnetic moment precession[32]; (c) the interaction between the laser pulse and the three thermalized reservoirs of electrons, lattice, and spin; (d) the temperature changes of electrons, lattice, and spin with time[5].
图 2 拓扑表面态增强的Fe/Bi2Se3的超快自旋动力学行为 (a), (b)分别为9 QL和3 QL的Bi2Se3能带结构; (c) 异质结阻尼因子随温度的变化; (d) Fe/Bi2Se3 (9 QL 和3 QL)表面态对超快退磁的影响[57]
Figure 2. Topological surface state enhanced ultrafast spin dynamics of Fe/Bi2Se3 heterostructures: (a), (b) The band structures of Bi2Se3 with the thickness of 9 QL and 3 QL; (c) temperature dependence of damping; (d) ultrafast demagnetization curves of different samples[57].
图 3 可产生Skyrmions的FeGe材料中Type I-Type II超快退磁的转变 (a), (b) 分别为温度、磁场相关的FeGe薄膜的超快退磁行为; (c), (d)分别为第1步退磁与第2步退磁的退磁时间、退磁量的比值, 其中(c)插图为50 ps内的示例曲线; (e), (f)分别为磁性测量的FeGe磁相图, 灰色线为磁相转变区, 椭圆形区域为Skyrmions出现区域, 不同的颜色代表(c)和(d)的数值, 白色虚线为Type I到Type II转变的边界, 黑色点为测量TR-MOKE的条件, 红色点为(a)和(b)的测量条件[59]
Figure 3. Transition of Type I-Type II ultrafast demagnetization in FeGe materials capable of generating Skyrmions. (a), (b) The dependence of the ultrafast demagnetization of FeGe film on the ambient temperature scenario and field scenario. (c), (d) The demagnetization times and amplitude ratios between the second and first step obtained by bi-exponential function. Inset in (c) is an example curve shown up to 50 ps. (e), (f) The magnetic phase diagrams of FeGe obtained by magnetization measurements. Gray solid lines are the boundaries of magnetic phases. Elliptic shadow is a reference skyrmion region. Color map in (e), (f) represents the data in (c), (d), respectively. The white dashed line is the boundary between Type-I and Type-II demagnetization. Black dots are all the TR-MOKE measurement points; red dots are the data points shown in (a), (b)[59].
图 7 超快退磁时间与阻尼因子的关系 (a) Co/Ni双层膜的超快退磁时间与阻尼因子的正比关系[79]; (b) FeGa/IrMn双层膜的超快退磁时间与阻尼因子的反比关系[80]
Figure 7. Relationship between the ultrafast demagnetization time and damping: (a) The ultrafast demagnetization time is in direct proportion to the damping in the Co/Ni bilayer[79]; (b) the ultrafast demagnetization time is inversely proportional to the damping in the FeGa/IrMn bilayer[80].
图 8 (a) Co薄膜中的各向异性超快自旋动力学[81]; (b), (c) Fe/GeTe (30 nm)的各向异性阻尼因子与各向异性能带结构; (d), (e) Fe/GeTe (5 nm)的各向同性阻尼因子以及各向同性的能带劈裂[82]
Figure 8. (a) Anisotropic ultrafast spin dynamics in Co thin film[81]; (b), (c) the anisotropic damping and splitting band structures of Fe/GeTe (30 nm); (d), (e) the isotropic damping and band structure of Fe/GeTe (5 nm)[82].
图 10 RABBITT方法实现阿秒时间分辨的电子动力学 (a)利用RABBITT实现阿秒时间分辨的光电子能谱装置[98]; (b) RABBITT的过程示意图[98]
Figure 10. Attosecond time resolution electrons dynamics by RABBITT method: (a) Schematic illustration of the photoemission spectrum with attosecond time resolution by RABBITT method[98]; (b) schematic representation of the three steps of RABBITT[98].
表 1 常见的3d过度族元素的M2, 3边的能量
Table 1. The M2, 3 energies for 3d elements.
元素 M2, 3 边能量/eV 元素 M2, 3 边能量/eV Sc 32 Fe 54 Ti 35 Co 60 V 38 Ni 68 Cr 42 Cu 74 Mn 49 Zn 87 -
[1] Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731
Google Scholar
[2] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901
Google Scholar
[3] Farle M 1998 Rep. Prog. Phys. 61 755
Google Scholar
[4] Kambersky V 1976 Czech. J. Phys. B 26 1366
Google Scholar
[5] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250
Google Scholar
[6] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601
Google Scholar
[7] Lambert C H, Mangin S, Varaprasad B S D C S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton E E 2014 Science 345 1337
Google Scholar
[8] Igarashi J, Zhang W, Remy Q, Diaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725
Google Scholar
[9] Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455
Google Scholar
[10] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
Google Scholar
[11] Ferray M, L'Huillier A, Li X F, Lomprk L A, Mainfray G, Manus C 1988 J. Phys. B-At. Mol. Opt. 21 L31
Google Scholar
[12] Nisoli M, Sansone G 2009 Prog. Quant. Electron. 33 17
Google Scholar
[13] Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schroder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Munzenberg M, Sharma S, Schultze M 2019 Nature 571 240
Google Scholar
[14] Li Y, Li Y, Liu Q, Xie Z K, Vetter E, Yuan Z, He W, Liu H L, Sun D L, Xia K, Yu W, Sun Y B, Zhao J J, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 103040
Google Scholar
[15] Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. Lett. 88 117601
Google Scholar
[16] Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149
Google Scholar
[17] Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190
Google Scholar
[18] Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509
Google Scholar
[19] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
Google Scholar
[20] Yang S A 2016 Spin 06 1640003
Google Scholar
[21] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178
Google Scholar
[22] Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509
Google Scholar
[23] Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871
Google Scholar
[24] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev Mod Phys 87 1213
Google Scholar
[25] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602
Google Scholar
[26] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
Google Scholar
[27] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801
Google Scholar
[28] Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
Google Scholar
[29] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[30] Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B Condens. Matter. 39 4828
Google Scholar
[31] Hashimoto S, Ochiai Y 1990 J. Magn. Magn. Mater. 88 211
Google Scholar
[32] Cheng Z H, He W, Zhang X Q, Sun D L, Du H F, Wu Q, Ye J, Fang Y P, Liu H L 2015 Chin. Phys. B 24 077505
Google Scholar
[33] Walowski J, Muller G, Djordjevic M, Munzenberg M, Klaui M, Vaz C A, Bland J A 2008 Phys. Rev. Lett. 101 237401
Google Scholar
[34] Radu I, Woltersdorf G, Kiessling M, Melnikov A, Bovensiepen U, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 117201
Google Scholar
[35] Guidoni L, Beaurepaire E, Bigot J Y 2002 Phys. Rev. Lett. 89 017401
Google Scholar
[36] Graves C E, Reid A H, Wang T, et al. 2013 Nat. Mater. 12 293
Google Scholar
[37] Bartelt A F, Comin A, Feng J, Nasiatka J R, Eimüller T, Ludescher B, Schütz G, Padmore H A, Young A T, Scholl A 2007 Appl. Phys. Lett. 90 162503
Google Scholar
[38] Li Y, Zhang W, Li N, Sun R, Tang J, Gong Z Z, Li Y, Yang X, Xie Z K, Gul Q, Zhang X Q, He W, Cheng Z H 2019 J. Phys. Condens. Mat. 31 305802
Google Scholar
[39] Zhang Q, Nurmikko A V, Miao G X, Xiao G, Gupta A 2006 Phys. Rev. B 74 064414
Google Scholar
[40] Muller G M, Walowski J, Djordjevic M, Miao G X, Gupta A, Ramos A V, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J, Thomas A, Hutten A, Reiss G, Moodera J S, Munzenberg M 2009 Nat. Mater. 8 56
Google Scholar
[41] Lu X Y, Lin Z Y, Pi H Q, Zhang T, Li G Q, Gong Y T, Yan Y, Ruan X Z, Li Y, Zhang H, Li L, He L, Wu J, Zhang R, Weng H M, Zeng C G, Xu Y B 2024 Nat. Commun. 15 2410
Google Scholar
[42] Lichtenberg T, Schippers C F, van Kooten S C P, Evers S G F, Barcones B, Guimarães M H D, Koopmans B 2022 2D Mater. 10 015008
Google Scholar
[43] Wu N, Zhang S J, Chen D Q, Wang Y X, Meng S 2024 Nat. Commun. 15 2804
Google Scholar
[44] Khela M, Da Browski M, Khan S, Keatley P S, Verzhbitskiy I, Eda G, Hicken R J, Kurebayashi H, Santos E J G 2023 Nat. Commun. 14 1378
Google Scholar
[45] Sun T, Zhou C, Jiang Z Z, Li X M, Qiu K, Xiao R C, Liu C X, Ma Z W, Luo X, Sun Y P, Sheng Z G 2021 2D Mater. 8 045040
Google Scholar
[46] Da Browski M, Guo S, Strungaru M, Keatley P S, Withers F, Santos E J G, Hicken R J 2022 Nat. Commun. 13 5976
Google Scholar
[47] Lee W J, Fernandez-Mulligan S, Tan H X, Yan C H, Guan Y D, Lee S H, Mei R B, Liu C X, Yan B H, Mao Z Q, Yang S L 2023 Nat. Phys. 19 950
Google Scholar
[48] Padmanabhan H, Stoica V A, Kim P K, Poore M, Yang T N, Shen X Z, Reid A H, Lin M F, Park S, Yang J, Wang H Y, Koocher N Z, Puggioni D, Georgescu A B, Min L J, Lee S H, Mao Z Q, Rondinelli J M, Lindenberg A M, Chen L Q, Wang X J, Averitt R D, Freeland J W, Gopalan V 2022 Adv. Mater. 34 2202841
Google Scholar
[49] Bartram F M, Leng Y C, Wang Y, Liu L, Chen X, Peng H, Li H, Yu P, Wu Y, Lin M L, Zhang J, Tan P H, Yang L 2022 npj Quantum. Mater. 7 84
Google Scholar
[50] Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. Condens. Matter. 26 103202
Google Scholar
[51] Atxitia U, Chubykalo-Fesenko O 2011 Phys. Rev. B 84 144414
Google Scholar
[52] Koopmans B, Ruigrok J J, Longa F D, de Jonge W J 2005 Phys. Rev. Lett. 95 267207
Google Scholar
[53] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fahnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259
Google Scholar
[54] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
Google Scholar
[55] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855
Google Scholar
[56] Schellekens A J, Kuiper K C, de Wit R R J C, Koopmans B 2014 Nat. Commun. 5 4333
Google Scholar
[57] Li N, Sun Y B, Sun R, Yang X, Zhang W, Xie Z K, Liu J N, Li Y, Li Y, Gong Z Z, Zhang X Q, He W, Cheng Z H 2022 Phys. Rev. B 105 144415
Google Scholar
[58] Hou Y S, Wu R Q 2019 Phys. Rev. Appl. 11 054032
Google Scholar
[59] Gong Z H, Zhang W, Liu J N, Xie Z K, Yang X, Tang J, Du H F, Li N, Zhang X Q, He W, Cheng Z H 2023 Phys. Rev. B 107 144429
Google Scholar
[60] Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16
Google Scholar
[61] Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug. Invent. Today 5 157
Google Scholar
[62] Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256
Google Scholar
[63] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
Google Scholar
[64] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
Google Scholar
[65] Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E 2008 Phys. Rev. Lett. 101 036601
Google Scholar
[66] Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L, Jaffres H 2014 Phys. Rev. Lett. 112 106602
Google Scholar
[67] Sun R, Yang S J, Yang X, Vetter E, Sun D L, Li N, Su L, Li Y, Li Y, Gong Z Z, Xie Z K, Hou K Y, Gul Q, He W, Zhang X Q, Cheng Z H 2019 Nano Lett. 19 4420
Google Scholar
[68] Sun R, Yang S J, Yang X, Kumar A, Vetter E, Xue W H, Li Y, Li N, Li Y, Zhang S H, Ge B H, Zhang X Q, He W, Kemper A F, Sun D, Cheng Z H 2020 Adv. Mater. 32 2005315
Google Scholar
[69] Qiu H S, Zhou L, Zhang C, Wu J, Tian Y, Cheng S, Mi S, Zhao H, Zhang Q, Wu D, Jin B, Chen J, Wu P 2020 Nat. Phys. 17 388
Google Scholar
[70] Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y, Cheng Z H 2018 Adv. Mater. 30 1706439
Google Scholar
[71] Kuiper K C, Roth T, Schellekens A J, Schmitt O, Koopmans B, Cinchetti M, Aeschlimann M 2014 Appl. Phys. Lett. 105 202402
Google Scholar
[72] Zhang G P, Hubner W 2000 Phys. Rev. Lett. 85 3025
Google Scholar
[73] Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P 2022 Nature 602 73
Google Scholar
[74] Ren Y, Zuo Y L, Si M S, Zhang Z Z, Jin Q Y, Zhou S M 2013 Ieee T. Magn. 49 3159
Google Scholar
[75] Zhang Z, Wu D, Luan Z, Yuan H, Zhang Z, Zhao J, Zhao H, Chen L 2015 IEEE Magn. Lett. 6 1
Google Scholar
[76] Woltersdorf G, Kiessling M, Meyer G, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 257602
Google Scholar
[77] Gilmore K, Stiles M D, Seib J, Steiauf D, Fahnle M 2010 Phys. Rev. B 81 174414
Google Scholar
[78] Xia H, Zhao Z R, Zeng F L, Zhao H C, Shi J Y, Zheng Z, Shen X, He J, Ni G, Wu Y Z, Chen L Y, Zhao H B 2021 Phys. Rev. B 104 024404
Google Scholar
[79] Zhang W, He W, Zhang X Q, Cheng Z H, Teng J, Fähnle M 2017 Phys. Rev. B 96 220415
Google Scholar
[80] Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412
Google Scholar
[81] Unikandanunni V, Medapalli R, Fullerton E E, Carva K, Oppeneer P M, Bonetti S 2021 Appl. Phys. Lett. 118 232404
Google Scholar
[82] Yang X, Qiu L, Li Y, Xue H P, Liu J N, Sun R, Yang Q L, Gai X S, Wei Y S, Comstock A H, Sun D, Zhang X Q, He W, Hou Y, Cheng Z H 2023 Phys. Rev. Lett. 131 186703
Google Scholar
[83] Waldrop M M 2016 Nature 530 144
Google Scholar
[84] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
Google Scholar
[85] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506
Google Scholar
[86] Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891
Google Scholar
[87] Midorikawa K 2022 Nat. Photonics 16 267
Google Scholar
[88] Xue B, Tamaru Y, Fu Y, Yuan H, Lan P, Mücke O D, Suda A, Midorikawa K, Takahashi E J 2020 Sci. Adv. 6 eaay2802
Google Scholar
[89] Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875
Google Scholar
[90] Corkum P B, Krausz F 2007 Nat. Phys. 3 381
Google Scholar
[91] Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822
Google Scholar
[92] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287
Google Scholar
[93] Li S, Wang R, Frauenheim T, He J 2024 J. Phys. Chem. Lett. 15 5959
Google Scholar
[94] Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62
Google Scholar
[95] Hofherr M, Häuser S, Dewhurst J K, Tengdin P, Sakshath S, Nembach H T, Weber S T, Shaw J M, Silva T J, Kapteyn H C, Cinchetti M, Rethfeld B, Murnane M M, Steil D, Stadtmüller B, Sharma S, Aeschlimann M, Mathias S 2020 Sci. Adv. 6 eaay8717
Google Scholar
[96] Ryan S a A, Johnsen P C, Elhanoty M F, Grafov A, Li N, Delin A, Markou A, Lesne E, Felser C, Eriksson O, Kapteyn H C, Grånäs O, Murnane M M 2023 Sci. Adv. 9 eadi1428
Google Scholar
[97] Tengdin P, Gentry C, Blonsky A, Zusin D, Gerrity M, Hellbrück L, Hofherr M, Shaw J, Kvashnin Y, Delczeg-Czirjak E K, Arora M, Nembach H, Silva T J, Mathias S, Aeschlimann M, Kapteyn H C, Thonig D, Koumpouras K, Eriksson O, Murnane M M 2020 Sci. Adv. 6 eaaz1100
Google Scholar
[98] Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M, Keller U 2015 Optica 2 405
Google Scholar
[99] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
Google Scholar
[100] Chainani A, Yokoya T, Kiss T, Shin S 2000 Phys. Rev. Lett. 85 1966
Google Scholar
[101] Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515
Google Scholar
Catalog
Metrics
- Abstract views: 3493
- PDF Downloads: 332
- Cited By: 0