Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics and frequency response analysis of encapsulated microbubble under nonlinear ultrasound

Suo Ding-Jie Ji Zhen-Xiang Huang Xiao-Yun Jin Jie Yan Tian-Yi

Citation:

Dynamics and frequency response analysis of encapsulated microbubble under nonlinear ultrasound

Suo Ding-Jie, Ji Zhen-Xiang, Huang Xiao-Yun, Jin Jie, Yan Tian-Yi
PDF
HTML
Get Citation
  • Bubble dynamic behavior and frequency response of encapsulated microbubbles in nonlinear acoustic field is significant in applications such as tumor therapy, thrombolysis, tissue destruction, and ultrasonic lithotripsy. The acoustic cavitation effect includes stable cavitation and transient cavitation. The transformation from stable cavitation to transient cavitation requires a certain threshold, which is also called the transient cavitation threshold. Phospholipid-coated microbubbles are commonly used to enhance acoustic cavitation. However, the acoustic effects of different coating materials are not very clear, especially when considering the nonlinear effects caused by diffraction, scattering, and reflection during ultrasonic propagation. In this paper, the bubble dynamic behaviors and frequency responses of microbubbles under different frequencies, acoustic pressures, and viscoelastic properties of different shell materials are analyzed by coupling the Gilmore-Akulichev-Zener model with the nonlinear model of a lipid envelope and using the KZK equation to simulate the nonlinear acoustic field. At the same time, the influence of the coated material and nonlinear acoustic effects are considered. The bubble dynamic behavior and frequency response under the actually measured sound field are compared with those simulated by the KZK equation. The results show that the nonlinearity will lead the velocity of the microbubble wall to decrease, and when the pressure of ultrasound increases, the main frequency component of the microbubble oscillation increases, making the radial motion of the microbubble more violent. When the frequency changes, the closer the oscillation frequency of the microbubble is to the resonant frequency, the stronger the radial motion of the microbubble is. The coating material can change the harmonic component in the oscillation frequency. When the harmonic is close to the resonance frequency, the radial motion of the microbubble is enhanced. The elasticity of the coated material has almost no effect on the microbubble's frequency response, and the initial viscosity and surface tension of encapsulated microbubble will change the oscillation frequency distribution of encapsulated microbubble. When the initial viscosity of the coated microbubble is smaller, the subharmonic component of the microbubble oscillation increases. When the frequency of the subharmonic is closer to the resonance frequency than the main frequency, the acoustic cavitation effect is significantly enhanced. On the other hand, when the initial surface tension of the encapsulated microbubble increases, the main frequency and subharmonic component of the microbubble oscillation are enhanced, so that the acoustic cavitation effect is also enhanced. Therefore, this study can further elucidate the bubble dynamics of encapsulated microbubbles, stimulated by nonlinear ultrasound, benefiting the frequency response analysis of coated microbubbles under nonlinear acoustic fields.
      Corresponding author: Yan Tian-Yi, yantianyi@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12104049).
    [1]

    Yasui K 2018 Acoustic Cavitation and Bubble Dynamics (Springer

    [2]

    Ashokkumar M 2011 Ultrason. Sonochem. 18 864Google Scholar

    [3]

    沈壮志, 林书玉 2011 60 084302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302Google Scholar

    [4]

    Gielen B, Jordens J, Janssen J, Pfeiffer H, Wevers M, Thomassen L C J, Braeken L, Van Gerven T 2015 Ultrason. Sonochem. 25 31Google Scholar

    [5]

    Petit B, Bohren Y, Gaud E, Bussat P, Arditi M, Yan F, Tranquart F, Allémann E 2015 Ultrasound Med. Biol. 41 1402Google Scholar

    [6]

    Jiménez-Fernández J, Crespo A 2005 Ultrasonics 43 643Google Scholar

    [7]

    Izadifar Z, Babyn P, Chapman D 2019 J. Med. Biol. Eng. 39 259Google Scholar

    [8]

    van den Bijgaart R J E, Eikelenboom D C, Hoogenboom M, Fütterer J J, den Brok M H, Adema G J 2017 Cancer Immunol. Immunother. 66 247Google Scholar

    [9]

    Clark A, Bonilla S, Suo D J, Shapira Y, Averkiou M 2021 Ultrasound Med. Biol. 47 2296Google Scholar

    [10]

    Suo D J, Guo S, Lin W, Jiang X, Jing Y 2015 Phys. Med. Biol. 60 7403Google Scholar

    [11]

    Suo D J, Govind B, Gu J, Dayton P A, Jing Y 2019 J. Appl. Phys. 125 084702Google Scholar

    [12]

    Belzberg M, Mahapatra S, Perdomo-Pantoja A, Chavez F, Morrison K, Xiong K T, Gamo N J, Restaino S, Thakor N, Yazdi Y, Iyer R, Tyler B, Theodore N, Luciano M G, Brem H, Groves M, Cohen A R, Manbachi A 2020 Ultrasonics 108 106210Google Scholar

    [13]

    Cambronero S, Dupré A, Mastier C, Melodelima D 2023 Ultrasound Med. Biol. 49 212Google Scholar

    [14]

    Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O 2007 Ultrason. Sonochem. 14 484Google Scholar

    [15]

    Lee J, Yasui K, Ashokkumar M, Kentish S E 2018 Cryst. Growth Des. 18 5108Google Scholar

    [16]

    Pandit A V, Sarvothaman V P, Ranade V V 2021 Ultrason. Sonochem. 77 105677Google Scholar

    [17]

    Yusof N S M, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M 2016 Ultrason. Sonochem. 29 568Google Scholar

    [18]

    Zhang L, Li Z D, Li K, Li H X, Zhao J F 2015 Appl. Therm. Eng. 88 118Google Scholar

    [19]

    Daghooghi-Mobarakeh H, Daghooghi M, Miner M, Wang L, Wang R, Phelan P E 2022 Therm. Sci. Eng. Prog. 33 101374Google Scholar

    [20]

    Alehossein H, Qin Z 2007 Int. J. Numer. Methods Eng. 72 780Google Scholar

    [21]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [22]

    Doinikov A A 2002 Phys. Fluids 14 1420Google Scholar

    [23]

    Pelekasis N A, Gaki A, Doinikov A, Tsamopoulos J A 2004 J. Fluid Mech. 500 313Google Scholar

    [24]

    Yang X, Church C C 2005 Acoust. Res. Lett. Online 6 151Google Scholar

    [25]

    Suo D J, Govind B, Zhang S, Jing Y 2018 Ultrason. Sonochem. 41 419Google Scholar

    [26]

    Zilonova E, Solovchuk M, Sheu T W H 2018 Ultrason. Sonochem. 40 900Google Scholar

    [27]

    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D 2005 J. Acoust. Soc. Am. 118 3499Google Scholar

    [28]

    Cui Z, Li D, Xu S, Xu T, Wu S, Bouakaz A, Wan M, Zhang S 2020 Ultrason. Sonochem. 63 104935Google Scholar

    [29]

    于洁, 郭霞生, 屠娟, 章东 2015 64 094306Google Scholar

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306Google Scholar

    [30]

    秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡 2021 70 154701Google Scholar

    Qin D, Zou Q Q, Li Z Y, Wang W, Wan M X, Feng Y 2021 Acta Phys. Sin. 70 154701Google Scholar

    [31]

    Kostin I, Panasenko G 2006 CR Mécanique 334 220Google Scholar

    [32]

    Shevchenko I, Kaltenbacher B 2015 J. Comput. Phys. 302 200Google Scholar

    [33]

    Bakhtiari-Nejad M, Shahab S 2019 Acoustics 1 14Google Scholar

    [34]

    Ghalichi F, Behnia S, Mottaghi F, Yahyavi M 2020 Phys. Scr. 95 085215Google Scholar

    [35]

    Gharloghi S, Gholami M, Haghparast A, Dehlaghi V 2017 Iran. J. Med. Phys. 14 15Google Scholar

    [36]

    Wang M, Lei Y, Zhou Y 2019 Ultrasonics 91 134Google Scholar

    [37]

    Li Z, Zou Q, Qin D 2022 Phys. Med. Biol. 67 085017Google Scholar

    [38]

    Shen Y, Zhang L, Wu Y, Chen W 2021 Ultrason. Sonochem. 73 105535Google Scholar

  • 图 1  线性声场和非线性声场下微泡动力学行为频率响应 (a) 相同正压下的线性超声与非线性超声波形图; (b), (c) 微泡动力学行为的对比; (d) 微泡半径变化的振荡频率响应, 蓝色线条表示驱动声压为KZK方程仿真的非线性声场, 红色线条表示线性声场

    Figure 1.  Dynamics behavior and frequency response of microbubbles under linear and nonlinear ultrasound fields: (a) Linear and nonlinear ultrasonic waveforms under the same positive pressure; (b), (c) comparison of bubble dynamics behaviors; (d) oscillation frequency response of the microbubble radius change, the blue lines represent the driving sound pressure as the nonlinear ultrasound field simulated by the KZK equation, and the red lines represent the linear ultrasound field.

    图 2  (a), (b), (e) 不同声压下非线性超声的微泡动力学行为和频率响应的差异; (c), (d), (f) 不同频率下非线性超声的微泡动力学行为和频率响应差异

    Figure 2.  (a), (b), (e) Differences in the kinetic behavior and frequency response of microbubbles in nonlinear ultrasound at different acoustic pressures; (c), (d), (f) differences in microbubble kinetic behavior and frequency response of microbubbles in nonlinear ultrasound at different frequencies.

    图 3  不同包膜材料对微泡动力学行为和频率响应影响 (a), (b) 包膜微泡的初始表面张力; (c), (d) 包膜的黏性参数

    Figure 3.  Effects of different coating materials on bubble dynamic behavior and frequency response of encapsulated microbubbles: (a), (b) Initial surface tension of encapsulated microbubbles; (c), (d) viscosity parameters of encapsulated microbubbles.

    图 4  不同包膜材料组合对微泡动力学行为和频率响应影响 (a), (c), (e) 颜色表示微泡半径变化; (b), (d), (f) 颜色表示C的变化

    Figure 4.  Effects of bubble shell on bubble dynamics and frequency response in the nonlinear ultrasound field: (a), (c), (e) Color bar of is the change of radius; (b), (d), (f) color bar is the change of C.

    图 5  实际测量值与KZK仿真对比图 (a) 相同正压下实际测量与KZK方程仿真波形图; (b), (c) 微泡动力学行为的对比; (d) 微泡半径变化的振荡频率响应

    Figure 5.  Actual measured values are compared with the KZK simulation: (a) Actual measurement and KZK equation simulation waveform diagram under the same positive pressure; (b), (c) comparison of the dynamic behavior of microbubbles; (d) oscillation frequency response of the microbubble radius change.

    表 1  参数名称和值

    Table 1.  Name and value of the parameters.

    参数
    静态压力$ {p}_{0} $ 0.1013 MPa
    初始半径$ {R}_{0} $
    多向性系数$ \gamma $ 1.4
    Gilmore方程的常数n 7
    壳的初始黏性参数$ {k}_{0} $ 5×10–8 kg·s–1
    特征时间常数$ \alpha $ 5×10–7 s
    包膜微泡的弹性$ \lambda $ 0.44 N/m
    介质中的黏性$ \mu $ 0.009 Pa·s
    初始表面张力$ {\sigma }_{0} $ 0.01 N/m
    组织的表面张力$ {\sigma }_{t} $ 0.068 N/m
    组织的松弛时间$ \varphi $ 3×10–9 s
    气泡壁的焓变H
    组织密度$ \rho $ 1000 kg/m3
    介质的弹性模量G 0 Pa
    DownLoad: CSV
    Baidu
  • [1]

    Yasui K 2018 Acoustic Cavitation and Bubble Dynamics (Springer

    [2]

    Ashokkumar M 2011 Ultrason. Sonochem. 18 864Google Scholar

    [3]

    沈壮志, 林书玉 2011 60 084302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302Google Scholar

    [4]

    Gielen B, Jordens J, Janssen J, Pfeiffer H, Wevers M, Thomassen L C J, Braeken L, Van Gerven T 2015 Ultrason. Sonochem. 25 31Google Scholar

    [5]

    Petit B, Bohren Y, Gaud E, Bussat P, Arditi M, Yan F, Tranquart F, Allémann E 2015 Ultrasound Med. Biol. 41 1402Google Scholar

    [6]

    Jiménez-Fernández J, Crespo A 2005 Ultrasonics 43 643Google Scholar

    [7]

    Izadifar Z, Babyn P, Chapman D 2019 J. Med. Biol. Eng. 39 259Google Scholar

    [8]

    van den Bijgaart R J E, Eikelenboom D C, Hoogenboom M, Fütterer J J, den Brok M H, Adema G J 2017 Cancer Immunol. Immunother. 66 247Google Scholar

    [9]

    Clark A, Bonilla S, Suo D J, Shapira Y, Averkiou M 2021 Ultrasound Med. Biol. 47 2296Google Scholar

    [10]

    Suo D J, Guo S, Lin W, Jiang X, Jing Y 2015 Phys. Med. Biol. 60 7403Google Scholar

    [11]

    Suo D J, Govind B, Gu J, Dayton P A, Jing Y 2019 J. Appl. Phys. 125 084702Google Scholar

    [12]

    Belzberg M, Mahapatra S, Perdomo-Pantoja A, Chavez F, Morrison K, Xiong K T, Gamo N J, Restaino S, Thakor N, Yazdi Y, Iyer R, Tyler B, Theodore N, Luciano M G, Brem H, Groves M, Cohen A R, Manbachi A 2020 Ultrasonics 108 106210Google Scholar

    [13]

    Cambronero S, Dupré A, Mastier C, Melodelima D 2023 Ultrasound Med. Biol. 49 212Google Scholar

    [14]

    Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O 2007 Ultrason. Sonochem. 14 484Google Scholar

    [15]

    Lee J, Yasui K, Ashokkumar M, Kentish S E 2018 Cryst. Growth Des. 18 5108Google Scholar

    [16]

    Pandit A V, Sarvothaman V P, Ranade V V 2021 Ultrason. Sonochem. 77 105677Google Scholar

    [17]

    Yusof N S M, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M 2016 Ultrason. Sonochem. 29 568Google Scholar

    [18]

    Zhang L, Li Z D, Li K, Li H X, Zhao J F 2015 Appl. Therm. Eng. 88 118Google Scholar

    [19]

    Daghooghi-Mobarakeh H, Daghooghi M, Miner M, Wang L, Wang R, Phelan P E 2022 Therm. Sci. Eng. Prog. 33 101374Google Scholar

    [20]

    Alehossein H, Qin Z 2007 Int. J. Numer. Methods Eng. 72 780Google Scholar

    [21]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [22]

    Doinikov A A 2002 Phys. Fluids 14 1420Google Scholar

    [23]

    Pelekasis N A, Gaki A, Doinikov A, Tsamopoulos J A 2004 J. Fluid Mech. 500 313Google Scholar

    [24]

    Yang X, Church C C 2005 Acoust. Res. Lett. Online 6 151Google Scholar

    [25]

    Suo D J, Govind B, Zhang S, Jing Y 2018 Ultrason. Sonochem. 41 419Google Scholar

    [26]

    Zilonova E, Solovchuk M, Sheu T W H 2018 Ultrason. Sonochem. 40 900Google Scholar

    [27]

    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D 2005 J. Acoust. Soc. Am. 118 3499Google Scholar

    [28]

    Cui Z, Li D, Xu S, Xu T, Wu S, Bouakaz A, Wan M, Zhang S 2020 Ultrason. Sonochem. 63 104935Google Scholar

    [29]

    于洁, 郭霞生, 屠娟, 章东 2015 64 094306Google Scholar

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306Google Scholar

    [30]

    秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡 2021 70 154701Google Scholar

    Qin D, Zou Q Q, Li Z Y, Wang W, Wan M X, Feng Y 2021 Acta Phys. Sin. 70 154701Google Scholar

    [31]

    Kostin I, Panasenko G 2006 CR Mécanique 334 220Google Scholar

    [32]

    Shevchenko I, Kaltenbacher B 2015 J. Comput. Phys. 302 200Google Scholar

    [33]

    Bakhtiari-Nejad M, Shahab S 2019 Acoustics 1 14Google Scholar

    [34]

    Ghalichi F, Behnia S, Mottaghi F, Yahyavi M 2020 Phys. Scr. 95 085215Google Scholar

    [35]

    Gharloghi S, Gholami M, Haghparast A, Dehlaghi V 2017 Iran. J. Med. Phys. 14 15Google Scholar

    [36]

    Wang M, Lei Y, Zhou Y 2019 Ultrasonics 91 134Google Scholar

    [37]

    Li Z, Zou Q, Qin D 2022 Phys. Med. Biol. 67 085017Google Scholar

    [38]

    Shen Y, Zhang L, Wu Y, Chen W 2021 Ultrason. Sonochem. 73 105535Google Scholar

  • [1] Zhang Ya-Jing, Wang Ming-Hao, Lei Zhao-Kang, Shen Wen-Jie, Ma Yan-Qiang, Mo Run-Yang. Acoustic scattering properties of multilayer membrane structured magnetic microbubbles. Acta Physica Sinica, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [2] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [3] Xu Ke, Xu Long, Zhou Guang-Ping. Dynamic characteristics of bubbles in spherical bubble group considering evaporation and condensation of water vapor. Acta Physica Sinica, 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [4] Zhao Li-Xia, Wang Cheng-Hui, Mo Run-Yang. Nonlinear acoustic characteristics of multilayer magnetic microbubbles. Acta Physica Sinica, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [5] Shi Hui-Min, Hu Jing, Wang Cheng-Hui, Feng Fei-Long, Mo Run-Yang. Vibrational behavior of coated microbubble in finite tube under magneto-acoustic composite field. Acta Physica Sinica, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [6] Qin Dui, Zou Qing-Qin, Li Zhang-Yong, Wang Wei, Wan Ming-Xi, Feng Yi. Acoustic cavitation of encapsulated microbubble and its mechanical effect in soft tissue. Acta Physica Sinica, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [7] Feng Kang-Yi, Wang Cheng-Hui. Effect of micro-bubble in ultrasonic field on microstreaming of elastic particle. Acta Physica Sinica, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [8] Chen Heng-Jie, Xue Hang, Li Shao-Xiong, Wang Zhen. A method of determining microwave dissipation of Josephson junctions with non-linear frequency response. Acta Physica Sinica, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [9] Zhou Bo-Rui, Tan Yi-Dong, Shen Xue-Ju, Zhu Kai-Yi, Bao Li-Ping. Mechanism of contrast-enhancement in ultrasound-modulated laser feedback imaging with ultrasonicmicrobubble contrast agent. Acta Physica Sinica, 2019, 68(21): 214304. doi: 10.7498/aps.68.20190770
    [10] Shen Zhuang-Zhi. Dynamical behaviors of cavitation bubble under acoustic standing wave field. Acta Physica Sinica, 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [11] Yu Jie, Guo Xia-Sheng, Tu Juan, Zhang Dong. Mecanism and applications of the nonlinear dynamic response to ultrasound contrast agent microbubbles. Acta Physica Sinica, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [12] Lou Zhi-Mei. A new method to obtain first order approximate conserved quantities of second-ordinary dynamics system containing nonlinear perturbation terms. Acta Physica Sinica, 2014, 63(6): 060202. doi: 10.7498/aps.63.060202
    [13] Wang Cheng-Hui, Cheng Jian-Chun. Nonlinear acoustical response of multibubbles in elastic tube. Acta Physica Sinica, 2014, 63(13): 134301. doi: 10.7498/aps.63.134301
    [14] Shao Wei-Hang, Chen Wei-Zhong. Localized high pressure near an aspheric encapsulated microbubble. Acta Physica Sinica, 2014, 63(20): 204702. doi: 10.7498/aps.63.204702
    [15] Liang Jin-Fu, Chen Wei-Zhong, Shao Wei-Hang, Zhou Chao, Du Lian-Fang, Jin Li-Fang. Observation of encapsulated microbubble dynamics in ultrasound field. Acta Physica Sinica, 2013, 62(8): 084708. doi: 10.7498/aps.62.084708
    [16] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamic behavior of a cavitation bubble in acoustic field and electric field. Acta Physica Sinica, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [17] Shen Zhuang-Zhi, Lin Shu-Yu. Dynamical behaviors of hydrodynamic cavitation bubble under ultrasound field. Acta Physica Sinica, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [18] Mo Qiu-Yan, Zhao Yan-Li. Frequency responses of communication avalanche photodiodes. Acta Physica Sinica, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [19] Li Jian-Feng, Zhang Hong-Dong, Qiu Feng, Yang Yu-Liang. A new approach to study the dynamics of the deformation of vesicles discrete-space variational method. Acta Physica Sinica, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [20] Li Bao-Shan, Zhu Zhi-Gang, Li Guo-Rong, Yin Qing-Rui, Ding Ai-Li. Frequency and temperature dependence of the hysteresis loop in PMnN-PZT ceramics. Acta Physica Sinica, 2005, 54(2): 939-943. doi: 10.7498/aps.54.939
Metrics
  • Abstract views:  1912
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2023
  • Accepted Date:  07 January 2024
  • Available Online:  18 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回
Baidu
map