搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态

刘义俊 陈以威 朱雨剑 黄焱 安冬冬 李庆鑫 甘祺康 朱旺 宋珺威 王开元 魏凌楠 宗其军 刘硕涵 李世伟 刘芝 张琪 徐瑛海 曹新宇 杨奥 王浩林 杨冰 Andy Shen 于葛亮 王雷

引用本文:
Citation:

转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态

刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷

Isospin polarized Chern insulator state of C = 4 in twisted double bilayer graphene

Liu Yi-Jun, Chen Yi-Wei, Zhu Yu-Jian, Huang Yan, An Dong-Dong, Li Qing-Xin, Gan Qi-Kang, Zhu Wang, Song Jun-Wei, Wang Kai-Yuan, Wei Ling-Nan, Zong Qi-Jun, Liu Shuo-Han, Li Shi-Wei, Liu Zhi, Zhang Qi, Xu Ying-Hai, Cao Xin-Yu, Yang Ao, Wang Hao-Lin, Yang Bing, Andy Shen, Yu Ge-Liang, Wang Lei
PDF
HTML
导出引用
  • 范德瓦耳斯材料相对扭转到特定角度时, 会出现几乎零色散的莫尔平带, 从而产生一系列关联电子物态, 例如非常规超导、关联绝缘态和轨道磁性等. 在转角双层-双层石墨烯(TDBG)体系中, 能带带宽和拓扑性质可以通过栅极施加的电位移场原位调控, 使该体系成为良好的研究拓扑相变和强关联物理的量子模拟平台. 在一定的电位移场作用下, TDBG中$ {C}_{2x} $对称性破缺, 中性点附近的导带和价带会获得有限的陈数. 能带的拓扑性质与强相互作用驱动的对称性破缺使得可以在低磁场下实现并调控陈绝缘态. 本工作通过制备高质量TDBG器件, 在有限磁场下, 在莫尔原胞填充因子$ \nu $=1处发现了陈数为4的陈绝缘态. 同时还发现纵向电阻出现电阻峰并随平行磁场或温度升高而增强的现象, 这类似于3He中的Pomeranchuk效应, 推测$ {\rm{\nu }} $=1处的陈绝缘态或许源于同位旋的极化.
    A flat band with nearly zero dispersion can be created by twisting the relative orientation of van der Waals materials, leading to a series of strongly correlated states, such as unconventional superconductivity, correlated insulating state, and orbital magnetism. The bandwidth and topological property of electronic band structure in a twisted double bilayer graphene are tunable by an external displacement field. This system can be an excellent quantum simulator to study the interplay between topological phase transition and strong electron correlation. Theoretical calculation shows that the $ {C}_{2x} $ symmetry in twisted double bilayer graphene (TDBG) can be broken by an electric displacement field, leading the lowest conduction and valence band near charge neutrality to obtain a finite Chern number. The topological properties of the band and the symmetry breaking driven by the strong interaction make it possible to realize and regulate the old insulation state at low magnetic fields. Hence Chern insulator may emerge from this topological non-trivial flat band under strong electron interaction. Here, we observe Chern insulator state with Chern number 4 at filling factor $ \nu =1 $ under a small magnetic field on twisted double bilayer graphene with twist angle 1.48°. Moreover, the longitudinal resistance shows a peak under a parallel magnetic field and increases with temperature or field rising, which is similar to the Pomeranchuk effect in 3He. This phenomenon indicates that Chern insulator at $ \nu =1 $ may originate from isospin polarization.
      通信作者: 于葛亮, yugeliang@nju.edu.cn ; 王雷, leiwang@nju.edu.cn
    • 基金项目: 江苏省杰出青年基金(批准号: BK20220066)、国家自然科学基金(批准号: 12074173)、江苏省创新人才、企业家项目(批准号: JSSCTD202101)和中央高校基本科研业务费(批准号: ZYTS23090)资助的课题
      Corresponding author: Yu Ge-Liang, yugeliang@nju.edu.cn ; Wang Lei, leiwang@nju.edu.cn
    • Funds: Project supported by the Jiangsu Outstanding Youth Project, China (Grant No. BK20220066), the National Natural Science Foundation of China (Grant No. 12074173), the Program for Innovative Talents and Entrepreneur in Jiangsu Province, China (Grant No. JSSCTD202101), and the Fundamental Research Funds for the Central Universities of China (Grant No. ZYTS23090).
    [1]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 12233Google Scholar

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [3]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [5]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Kruczynski M M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [6]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [7]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [8]

    Ghiotto A, Shih E M, Pereira G S, Rhodes D A, Kim B, Zang J W, Millis A J, Watanabe K, Taniguchi T, Hone J, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [9]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [10]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [11]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [12]

    Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, Zhang G Y 2020 Nat. Phys. 16 520Google Scholar

    [13]

    Liu X M, Hao Z Y, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [14]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [15]

    He M H, Li Y H, Cai J Q, Liu Y, Watanabe K, Taniguchi T, Xu X D, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [16]

    Rickhaus P, De-Vries F K, Zhu J H, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ihn T, Ensslin K 2021 Science 373 1257Google Scholar

    [17]

    Liu L, Zhang S H, Chu Y B, Shen C, Huang Y, Yuan Y L, Tian J P, Tang J, Ji Y R, Yang R, Watanabe K, Taniguchi T, Shi D X, Liu J P, Yang W, Zhang G Y 2022 Nat. Commun. 13 3292Google Scholar

    [18]

    刘健鹏, 戴希 2020 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [20]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [21]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [22]

    Haddadi F, Wu Q S, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [23]

    Rickhaus P, Zheng G, Lado J L, Lee Y J, Kurzmann A, Eich M, Pisoni R, Tong C Y, Garreis R, Gold C, Masseroni M, Taniguchi T, Watanabe K, Ihn T, Ensslin K 2019 Nano Lett. 19 8821Google Scholar

    [24]

    Wannier G H 1978 Phys. Status Solidi B 88 757Google Scholar

    [25]

    Thouless D J, Kohmoto M, Nightingale M P, Den-Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [26]

    Streda P 1982 J. Phys. C: Solid State Phys. 15 L1299Google Scholar

    [27]

    Wu Q S, Liu J P, Guan Y F, Yazyev O V 2021 Phys. Rev. Lett. 126 056401Google Scholar

    [28]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [29]

    Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [30]

    Das I, Lu X B, Arbeitman J H, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [31]

    Bhowmik S, Ghawri B, Leconte N, Appalakondaiah S, Pandey M, Mahapatra P S, Lee D, Watanabe K, Taniguchi T, Jung J, Ghosh A, Chandni U 2022 Nat. Phys. 18 639Google Scholar

    [32]

    Wang Y X, Li F X, Zhang Z Y 2021 Phys. Rev. B 103 115201Google Scholar

    [33]

    Saito Y, Yang F Y, Ge J Y, Liu X X, Taniguchi T, Watanabe K, Li J, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [34]

    Khalaf E, Chatterjee S, Bultinck N, Zaletel M P, Vishwanath A 2021 Sci. Adv. 7 5299Google Scholar

  • 图 1  TDBG器件的电输运测量 (a) 转角为1.48°的TDBG器件光学图; (b) 转角为$ \theta $的TDBG示意图; (c) 转角为$ \theta $的迷你布里渊区的示意图; (d)不同电势能作用下(U = 0 meV, U = 20 meV) TDBG的能带图; (e) T = 2 K时, 纵向电阻$ {R}_{xx} $随载流子浓度n和电位移场D变化

    Fig. 1.  Transport measurement of TDBG device: (a) Optical image of TDBG device with a twist angle of 1.48°; (b) TDBG with a twist angle $ \theta $; (c) schematic of mini Brillouin zone with a twist angle $ \theta $; (d) energy band of TDBG at different electric potential energy U = 0 meV and U = 20 meV; (e) longitudinal resistance $ {R}_{xx} $ versus carrier concentration n and electric displacement field D at T = 2 K.

    图 2  低温T = 2 K, D = 0下的磁输运 (a) D = 0时, $ {R}_{xx} $随填充因子$ \nu =4 n/{n}_{{\rm{s}}} $和垂直磁场$ {B}_{\perp } $的变化; (b) D = 0时, 横向电阻$ {R}_{xy} $随填充因子$ \nu =4 n/{n}_{{\rm{s}}} $和垂直磁场$ {B}_{\perp } $变化; (c) 从(a), (b)中提取得到的朗道能级序列(蓝色)

    Fig. 2.  Magnetotransport of resistance at low temperature of T = 2 K and D = 0: (a) Longitudinal resistance $ {R}_{xx} $ versus filling factor $ \nu =4 n/{n}_{{\rm{s}}} $ and vertical magnetic field $ {B}_{\perp } $ at D = 0; (b) Hall resistance $ {R}_{xy} $ versus filling factor $ \nu =4 n/{n}_{{\rm{s}}} $ and vertical magnetic field $ {B}_{\perp } $ at D = 0; (c) Landau level (blue) extracted from figure (a) and (b).

    图 3  低温(T = 2 K)不同外加电位移场作用下的磁输运性质 (a) D = –0.42 V/nm时, 纵向电阻$ {R}_{xx} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $的变化; (b) D = –0.42 V/nm时, 横向电阻$ {R}_{xy} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $的变化; (c) 从图3(a), (b)中提取得到的朗道能级序列(蓝色)和陈绝缘态(红色); (d) D = 0.5 V/nm时, 纵向电阻$ {R}_{xx} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $变化; (e) D = 0.5 V/nm时, 横向电阻$ {R}_{xy} $随填充因子$ \nu $和垂直磁场$ {B}_{\perp } $变化; (f)从图3(d), (e)中提取得到的朗道能级序列(蓝色)和陈绝缘态(红色); (g) 当垂直磁场$ {B}_{\perp } $ = 8.7 T时, (6, 0)所对应朗道能级的纵向电阻$ {R}_{xx} $和霍尔电导$ {\sigma }_{xy} $; (h) 当垂直磁场$ {B}_{\perp } $ = 8.7 T时, (4, 1)所对应陈绝缘态的纵向电阻$ {R}_{xx} $和霍尔电导$ {\sigma }_{xy} $

    Fig. 3.  Magnetotransport under different electric displacement field at low temperature T = 2 K: (a) Longitudinal resistance $ {R}_{xx} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = –0.42 V/nm; (b) Hall resistance $ {R}_{xy} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = –0.42 V/nm; (c) Landau level (blue) and Chern insulator (red) extracted from Fig. 3(a), (b); (d) longitudinal resistance $ {R}_{xx} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = 0.5 V/nm; (e) Hall resistance $ {R}_{xy} $ as a function of filling factor $ \nu $ and vertical magnetic field $ {B}_{\perp } $ at D = 0.5 V/nm; (f) Landau level (blue) and Chern insulator (red) extracted from Fig. 3(d) and Fig. 3(e); (g) longitudinal resistance $ {R}_{xx} $ and Hall conductance $ {\sigma }_{xy} $ of (6, 0) state at vertical magnetic field ${B}_{\perp } $ = 8.7 T; (h) longitudinal resistance $ {R}_{xx} $ and Hall conductance $ {\sigma }_{xy} $ of (4, 1) state at vertical magnetic field $ {B}_{\perp } $ = 8.7 T.

    图 4  温度和平行磁场诱导的极化 (a) B = 0, D = –0.42 V/nm时, 纵向电阻$ {R}_{xx} $随填充因子$ \nu $和温度T变化; (b)纵向电阻$ {R}_{xx} $随填充因子$ \nu $变化, 取自图4(a)的一系列温度下的截线; (c) D = 0时, 一系列不同温度下纵向电阻随$ {R}_{xx} $随载流子浓度n变化; (d) T = 0.2 K时, 纵向电阻$ {R}_{xx} $作为填充因子$ \nu $和平行磁场${B}_{//}$函数

    Fig. 4.  Temperature and parallel magnetic field induced polarization: (a) Longitudinal resistance $ {R}_{xx} $ versus filling factor $ \nu $ and temperature T at B = 0 and D = –0.42 V/nm; (b) longitudinal resistance $ {R}_{xx} $ versus filling factor $ \nu $ extracted from Fig. 4(a) under a series of specific temperature; (c) longitudinal resistance $ {R}_{xx} $ versus carrier concentration n under a series of specific temperature at D = 0; (d) longitudinal resistance $ {R}_{xx} $ as a function of filling factor $ \nu $ and parallel magnetic field ${B}_{//}$ at T = 0.2 K.

    Baidu
  • [1]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 12233Google Scholar

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [3]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [5]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Kruczynski M M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [6]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [7]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [8]

    Ghiotto A, Shih E M, Pereira G S, Rhodes D A, Kim B, Zang J W, Millis A J, Watanabe K, Taniguchi T, Hone J, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [9]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [10]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [11]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [12]

    Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, Zhang G Y 2020 Nat. Phys. 16 520Google Scholar

    [13]

    Liu X M, Hao Z Y, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [14]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [15]

    He M H, Li Y H, Cai J Q, Liu Y, Watanabe K, Taniguchi T, Xu X D, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [16]

    Rickhaus P, De-Vries F K, Zhu J H, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ihn T, Ensslin K 2021 Science 373 1257Google Scholar

    [17]

    Liu L, Zhang S H, Chu Y B, Shen C, Huang Y, Yuan Y L, Tian J P, Tang J, Ji Y R, Yang R, Watanabe K, Taniguchi T, Shi D X, Liu J P, Yang W, Zhang G Y 2022 Nat. Commun. 13 3292Google Scholar

    [18]

    刘健鹏, 戴希 2020 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [20]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [21]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [22]

    Haddadi F, Wu Q S, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [23]

    Rickhaus P, Zheng G, Lado J L, Lee Y J, Kurzmann A, Eich M, Pisoni R, Tong C Y, Garreis R, Gold C, Masseroni M, Taniguchi T, Watanabe K, Ihn T, Ensslin K 2019 Nano Lett. 19 8821Google Scholar

    [24]

    Wannier G H 1978 Phys. Status Solidi B 88 757Google Scholar

    [25]

    Thouless D J, Kohmoto M, Nightingale M P, Den-Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [26]

    Streda P 1982 J. Phys. C: Solid State Phys. 15 L1299Google Scholar

    [27]

    Wu Q S, Liu J P, Guan Y F, Yazyev O V 2021 Phys. Rev. Lett. 126 056401Google Scholar

    [28]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [29]

    Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [30]

    Das I, Lu X B, Arbeitman J H, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [31]

    Bhowmik S, Ghawri B, Leconte N, Appalakondaiah S, Pandey M, Mahapatra P S, Lee D, Watanabe K, Taniguchi T, Jung J, Ghosh A, Chandni U 2022 Nat. Phys. 18 639Google Scholar

    [32]

    Wang Y X, Li F X, Zhang Z Y 2021 Phys. Rev. B 103 115201Google Scholar

    [33]

    Saito Y, Yang F Y, Ge J Y, Liu X X, Taniguchi T, Watanabe K, Li J, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [34]

    Khalaf E, Chatterjee S, Bultinck N, Zaletel M P, Vishwanath A 2021 Sci. Adv. 7 5299Google Scholar

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离.  , 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 姜阳阳, 夏晓霜, 李建波. 双层石墨烯薄膜体系中的四波混频特性.  , 2023, 72(12): 126801. doi: 10.7498/aps.72.20230012
    [3] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离.  , 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [4] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联.  , 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [5] 李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷. 双层石墨烯中的偶数分母分数量子霍尔态.  , 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [6] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖.  , 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [7] 蔡潇潇, 罗国语, 李志强, 贺言. 转角双层石墨烯在应变下的光电导率.  , 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [8] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究.  , 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响.  , 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [11] 高潭华. 表面氢化双层硅烯的结构和电子性质.  , 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [12] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响.  , 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [13] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究.  , 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [14] 何龙, 宋筠. 双层石墨烯材料中无序导致超导-绝缘体相变的数值研究.  , 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [15] 吴江滨, 张昕, 谭平恒, 冯志红, 李佳. 旋转双层石墨烯的电子结构.  , 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [16] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖.  , 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [17] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离.  , 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [18] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离.  , 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [19] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算.  , 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [20] 徐 慧, 邓超生, 刘小良, 马松山, 伍晓赞. 一维长程关联无序系统中的电子态.  , 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
计量
  • 文章访问数:  4361
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 修回日期:  2023-05-09
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-07-20

/

返回文章
返回
Baidu
map