-
The development of colloidal near-infrared quantum dots (QD) lasers has been hindered by the high state degeneracy of lead salt QDs and the difficulty in coupling colloidal quantum dots to the resonant cavity. In this study, we show that above challenges can be addressed by the self-assembly laser based on Ag2Se QDs. Ag2Se QDs with the lowest quantized states 2-fold degeneracy are used to replace lead salt quantum dots to achieve low threshold near-infrared optical gain. We employ the finite element method to deeply analyze the mode field distribution and oscillation mechanism of the coffee-ring microcavity. Our results reveal that the light field oscillates in a zig-zag path along the cross-sectional area, indicating strong coupling between the QDs and the cavity mode. Furthermore, we investigate the relationship between cavity length and free spectrum range and laser emission wavelength. Leveraging this relationship and the gain spectrum characteristics of Ag2Se QDs, we design a single-mode near-infrared laser and conduct a comprehensive analysis. Using simulation results to fabricate a single-mode near-infrared Ag2Se QD coffee-ring microlaser, which exhibits a linewidth of 0.3 nm and a threshold of 158 μJ cm-2. Currently, it holds the record for the lowest laser threshold among near-infrared colloidal QD lasers. Increasing the laser cavity length, resulting in an increase in the emission wavelength from 1300 nm to 1323 nm. In addition, the toxicity of Ag2Se QDs is remarkably negligible. Our work promotes the development of environment-friendly near-infrared lasers to practical lasers.
-
[1] Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A 2010 Nat. Photonics 4 33
[2] Whitworth G L, Dalmases M, Taghipour N, Konstantatos G 2021 Nat. Photonics 15 738
[3] Cegielski P J, Giesecke A L, Neutzner S, Porschatis C, Gandini M, Schall D, Perini C A, Bolten J, Suckow S, Kataria S 2018 Nano Lett. 18 6915
[4] Vollmer F, Arnold S 2008 Nat. Methods 5 591
[5] Chen YC, Fan X 2019 Adv. Opt. Mater. 7 1900377
[6] Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale a C, Eisler H J, Bawendi M 2000 Science 290 314
[7] Ahn N, Livache C, Pinchetti V, Jung H, Jin H, Hahm D, Park Y S, Klimov V I 2023 Nature 617 79
[8] Fan F, Voznyy O, Sabatini R P, Bicanic K T, Adachi M M, McBride J R, Reid K R, Park Y S, Li X, Jain A, Quintero-Bermudez R, Saravanapavanantham M, Liu M, Korkusinski M, Hawrylak P, Klimov V I, Rosenthal S J, Hoogland S, Sargent E H 2017 Nature 544 75
[9] Dang C, Lee J, Breen C, Steckel J S, Coe-Sullivan S, Nurmikko A 2012 Nat. Nanotechnol. 7 335
[10] Wang Y, Yu D, Wang Z, Li X, Chen X, Nalla V, Zeng H, Sun H 2017 Small 13 1701587
[11] Ledentsov N, Ustinov V, Egorov A Y, Zhukov A, Maksimov M, Tabatadze I, 16 Kop'ev P 1994 Semiconductors 28 832
[12] Sukhovatkin V, Musikhin S, Gorelikov I, Cauchi S, Bakueva L, Kumacheva E, Sargent E H 2005 Opt. Lett. 30 171
[13] Schaller R D, Petruska M A, Klimov V I 2003 J. Phys. Chem. B 107 13765
[14] Klimov V I, Mikhailovsky A A, McBranch D, Leatherdale C A, Bawendi M G 2000 Science 287 1011
[15] Wundke K, Auxier J, Schülzgen A, Peyghambarian N, Borrelli N 1999 Appl. Phys. Lett. 75 3060
[16] Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q 2013 Chem. Mater. 25 2503
[17] Zhu C N, Jiang P, Zhang Z L, Zhu D L, Tian Z Q, Pang D W 2013 ACS Appl. Mater. Interfaces 5 1186
[18] Liao C, Tang L, Wang L, Li Y, Xu J, Jia Y 2020 Nanoscale 12 21879
[19] Liao C, Tang L, Li Y, Sun S, Wang L, Xu J, Jia Y, Gu Z 2022 Nanoscale 14 10169
[20] Chang H, Zhong Y, Dong H, Wang Z, Xie W, Pan A, Zhang L 2021 Light: Sci. Appl. 10 60
[21] Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897
[22] Yang H, Zhang L, Xiang W, Lu C, Cui Y, Zhang J 2022 Adv. Sci. 9 2200395
[23] Duan R, Zhang Z, Xiao L, Zhao X, Thung Y T, Ding L, Liu Z, Yang J, Ta V D,Sun H 2022 Adv. Mater. 34 2270104
[24] Wang Y, Leck K S, Ta D, Chen R, Nalla V, Gao Y, He T, Demir H, Sun H 2015 Adv. Mater. 27 169
[25] Zhang L, Li H, Liao C, Yang H, Ruilin X, Jiang X, Xiao M, Lu C, Cui Y, Zhang J 2018 J. Phys. Chem. C 122 25059
[26] Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z, He T, Ohl C D, Demir H V, Sun H 2017 Nano Lett. 17 2640
[27] Wang G, Jiang X, Zhao M, Ma Y, Fan H, Yang Q, Tong L, Xiao M 2012 Opt. Express 20 29472
[28] Min B, Kim S, Okamoto K, Yang L, Scherer A, Atwater H, Vahala K 2006 Appl. Phys. Lett. 89 191124
[29] Di Stasio F, Grim J Q, Lesnyak V, Rastogi P, Manna L, Moreels I, Krahne R 2015 Small 11 1328
[30] Zavelani-Rossi M, Krahne R, Della Valle G, Longhi S, Franchini I, Girardo S, Scotognella F, Pisignano D, Manna L, Lanzani G, Tassone F 2012 Laser Photonics Rev. 6 678
[31] Xu Z, Zhai T, Shi X, Tong J, Wang X, Deng J 2021 ACS Appl. Mater. Interfaces 13 19324
[32] Zhang C, Zou C L, Zhao Y, Dong C H, Wei C, Wang H, Liu Y, Guo G C, Yao J, Zhao Y S 2015 Sci. Adv. 1 e1500257
[33] Wong W W, Su Z, Wang N, Jagadish C, Tan H H 2021 Nano Lett. 21 5681
[34] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827
[35] Zhang Y J, Ye F X, Dai J, He B F, Zang D Y 2017 Acta Phys. Sin. 66 066101(in Chinese) [张永建,叶芳霞,戴君,何斌锋,臧渡洋 2017 66 066101]
[36] Zavelani-Rossi M, Lupo M G, Krahne R, Manna L, Lanzani G 2010 Nanoscale 2 931
[37] Ma J, Xiao L, Gu J, Li H, Cheng X, He G, Jiang X, Xiao M 2019 Photonics Res. 7 573
[38] Park Y S, Roh J, Diroll B T, Schaller R D, Klimov V I 2021 Nat. Rev. Mater. 6 382
[39] Ahn N, Livache C, Pinchetti V, Klimov V I 2023 Chem. Rev. 123 8251
[40] Taghipour N, Dalmases M, Whitworth G L, Dosil M, Othonos A, Christodoulou S, Liga S M, Konstantatos G 2023 Adv. Mater. 35 2207678
[41] Kozlov O V, Park Y S, Roh J, Fedin I, Nakotte T, Klimov V I 2019 Science 365 672
Metrics
- Abstract views: 1489
- PDF Downloads: 36
- Cited By: 0