Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical research of toxic gases adsorbed by Mo-doped two-dimensional VS2 structure

Wang Xue-Bing Tang Chun-Mei Xie Zi-Han Yu Rui Yan Jie Jiang Cheng-Le

Citation:

Theoretical research of toxic gases adsorbed by Mo-doped two-dimensional VS2 structure

Wang Xue-Bing, Tang Chun-Mei, Xie Zi-Han, Yu Rui, Yan Jie, Jiang Cheng-Le
PDF
HTML
Get Citation
  • As is well known, the leakage of four toxic gases, NO2, NH3, mustard gas and sarin greatly threaten the environment and human health. Among of them, mustard gas and sarin are two serious chemical and biological weapons agents, and exposure to a small amount can cause skin burns and immediate death. NO2 and NH3 are two common toxic pollutants produced by automobile exhaust, coal combustion and petrochemical industry. The presence of trace amounts of NO2 and NH3 gas in human tissues can cause serious respiratory diseases and damage human brain and other systems. Thus, it is very important to realize the rapid detection of NO2, NH3, mustard gas and sarin in academia and industry. In this study, we use density functional theory to investigate the ability of a transition metal Mo doped two-dimensional VS2 structure to detect the four representative toxic gases. The results reveal that Mo atom doping has a significant effect on the stability and gas-sensitivity of the VS2 structure. The Mo atom can be successfully doped on the S-vacancy in the two-dimensional VS2 structure. Compared with the undoped structure VS2, the doped structure Mo-VS2 has strong interaction with NO2, NH3, sarin, and mustard gas, realizing effective adsorption of them. The presence of Mo atom in the VS2 lattice changes the electronic structure of VS2, also modifies its band gap and density of states. The interaction between the Mo-VS2 structure and the target analytes depends strongly on the nature of the gas molecule. The binding energy values for NO2, NH3, mustard gas, and sarin on the Mo-VS2 are significantly higher than those on the pristine VS2, indicating stronger interaction between the Mo-VS2 structure and these gases. Our calculations show that the Mo atom in VS2 changes its electrical resistance after being exposed to the gases, which can be used to distinguish different gases. Moreover, differences in charge redistribution within the Mo-VS2 structure upon being exposed to different gases can be used to explain their differential gas-sensitivity. Our results can provide sufficient theoretical basis for experimental researchers to design and optimize the performances of sensors in practical applications.
      Corresponding author: Tang Chun-Mei, tcmnj@163.com
    • Funds: Project supported by the National Key Laboratory of Microstructure, Nanjing University, China (Grant No. M35036) and the Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education of China (Grant No. 202214).
    [1]

    Guthrie F 1860 Justus Liebigs Annalen der Chemie. 113 266Google Scholar

    [2]

    Niemann A 1860 Justus Liebigs Annalen der Chemie. 113 288Google Scholar

    [3]

    Meyer V 1886 Berichte der Deutschen Chemischen Gesellschaft 19 3259Google Scholar

    [4]

    Sadeghi M 2015 Basic and Clinical Toxicology of Mustard Compounds (New York: Springer International Publishing) pp1–27

    [5]

    Qin Y, Zhang Z 2020 Phys. E Low-dimens. Syst. Nanostruct. 116 113737Google Scholar

    [6]

    Jia X, Zhang H, Zhang Z, An L 2019 Superlattice Microst. 134 106235Google Scholar

    [7]

    Lundberg J O, Weitzberg E, Gladwin M T 2008 Nat. Rev. Drug Discov. 7 156Google Scholar

    [8]

    Basharnavaz H, Habibi-Yangjeh A, Kamali S H 2019 Mater. Chem. Phys. 231 264Google Scholar

    [9]

    刘卫卫, 余建华, 潘勇 2005 化学传感器 4 52Google Scholar

    Liu W W, Yu J H, Pan Y 2005 Chem. Sensors 4 52Google Scholar

    [10]

    Hill C L 1995 Coord. Chem. Rev. 143 407Google Scholar

    [11]

    Müller A, Peters F, Pope M T 1998 Chem. Rev. 98 239Google Scholar

    [12]

    Long D L, Burkholder E, Cronin L 2007 Chem. Soc. Rev. 36 105Google Scholar

    [13]

    徐望胜 2021 博士学位论文(合肥: 中国科学技术大学)

    Xu W S 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [14]

    Ali M, Tit N 2019 Surf. Sci. 684 28Google Scholar

    [15]

    Zhao Z, Yong Y, Hu S, Li C, Kuang Y 2019 AIP Adv. 9 125308Google Scholar

    [16]

    梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞 2021 70 080701Google Scholar

    Liang T, Wang Y Y, Liu G H, Fu W Y, Wang H Z, Chen J F 2021 Acta Phys. Sin. 70 080701Google Scholar

    [17]

    Fabian A 2018 arXiv. 1803.07999 [cond-mat. mtrl-sci

    [18]

    Delley B 2000 J. Chem. Phys. 113 7756e64Google Scholar

    [19]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244e9Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865e8Google Scholar

    [21]

    Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 Phys. Chem. C 111 17977e80Google Scholar

    [22]

    Delly B J 1990 Chem. Phys. 92 508e17Google Scholar

    [23]

    Liu Z C, Gui Y G, Xu L N, Chen X P 2022 Surf. Interfaces 30 101883Google Scholar

    [24]

    Shi Z Y, Zhang J Q, Zeng W, Zhou Q 2023 Langmuir 39 4125Google Scholar

    [25]

    Eric B I, Chris A M 2016 Phys. Rev. B 94 035120Google Scholar

    [26]

    Zhang B O, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [27]

    Xiong H H, Zhang H H, Gan L 2020 J. Phys. E 126 114463Google Scholar

    [28]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [29]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

    [30]

    Chen L, Xiong Z, Cui Y, Luo H, Gao Y 2021 Appl. Surf. Sci. 542 148767Google Scholar

  • 图 1  (a) VS2(001)表面; (b)掺杂结构Mo-VS2; (c) Mo-VS2结构的差分电荷密度图

    Figure 1.  (a) Structure of VS2(001); (b) doping structure of Mo-VS2; (c) differential charge density map of Mo-VS2.

    图 2  (a) VS2的能带图; (b) Mo-VS2的能带图

    Figure 2.  (a) Energy band diagram of VS2; (b) energy band diagram of Mo-VS2.

    图 3  (a) NH3和NO2分子位于Mo原子上方与表面平行; (b) NH3和NO2分子位于六元环中心位上方与表面平行; (c) NH3和NO2分子位于六元环中心位上方与表面垂直; (d) NH3和NO2分子位于Mo原子上方与表面垂直

    Figure 3.  (a) NH3 and NO2 molecules are located above the Mo atom and parallel to the surface; (b) NH3 and NO2 molecules are located above the center of the six-membered ring and parallel to the surface; (c) NH3 and NO2 molecules are located above the center of the six-membered ring and perpendicular to the surface; (d) NH3 and NO2 molecules are located above the Mo atom and perpendicular to the surface.

    图 4  (a), (c) S原子位于Mo原子的上方; (b), (d) C原子位于Mo原子的上方; (a), (b) HD分子沿表面短轴; (c), (d) HD分子沿表面长轴; (e)对结构(c)沿长轴旋转90o; (f) 对结构(c)沿长轴旋转180o; (g) 对结构(c)长轴旋转270o; (h) HD分子长轴垂直于表面

    Figure 4.  (a), (c) S atom is above the Mo atom; (b), (d) C atom is above the Mo atom; (a), (b) HD molecules along the short axis of the surface; (c), (d) HD molecules along the long axis of the surface; (e) rotate structure (c) by 90o along its major axis; (f) rotate structure (c) by 180o along its major axis; (g) rotate structure (c) by 270o along its major axis; (h) the major axis of the HD molecule is perpendicular to the surface.

    图 5  (a) C原子在Mo原子的上方; (b) F原子在Mo原子的上方; (c) H原子在Mo原子的上方; (d) 与P, C成键的O原子在Mo原子的上方; (e) 对结构4旋转90o; (f) 对结构4旋转180o; (g) 对结构4旋转270o; (h) sarin分子“长边”垂直于表面

    Figure 5.  (a) C atom is above the Mo atom; (b) F atom is above Mo atom; (c) H atom is above Mo atom; (d) O atom bonded with P and C is above the Mo atom; (e) rotate structure 4 by 90o; (f) rotate structure 4 by 180o; (g) rotate structure 4 by 270o; (h) the “long side” of the sarin molecule is perpendicular to the surface.

    图 6  4种气体在Mo掺杂前后的表面吸附构型 (a) NH3@VS2; (b) NO2@VS2; (c) HD@VS2; (d) sarin@VS2; (e) NH3@Mo-VS2; (f) NO2@Mo-VS2; (g) HD@Mo-VS2; (h) sarin@Mo-VS2.

    Figure 6.  Adsorption configurations of four kinds of gas before and after Mo doping: (a) NH3@VS2; (b) NO2@VS2; (c) HD@VS2; (d) sarin@VS2; (e) NH3@Mo-VS2; (f) NO2@Mo-VS2; (g) HD@Mo-VS2; (h) sarin@Mo-VS2

    图 7  差分电荷密度图 (a) NH3@Mo-VS2; (b) NO2@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2

    Figure 7.  Differential charge density map: (a) NH3@Mo-VS2; (b) NO2@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2.

    图 8  各体系的能带图 (a) NO2@Mo-VS2; (b) NH3@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2

    Figure 8.  Energy band diagram of different system: (a) NO2@Mo-VS2; (b) NH3@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2.

    图 9  Mo-VS2与NH3, NO2, HD, sarin吸附构型的态密度图

    Figure 9.  DOS diagram of Mo-VS2 adsorption configuration with NH3, NO2, HD and sarin.

    表 1  4种分子吸附在不同位置时与最低稳定结构之间的能量差ΔE

    Table 1.  Energy difference between the four molecules adsorbed at different positions and the lowest stable structure (ΔE).

    StructureSiteΔE/eVStructureSiteΔE/eVStructureSiteΔE/eV
    NH3a0.000HD10.858Sarin11.021
    b0.34820.85921.285
    c0.36930.00030.974
    d0.01240.89240.000
    NO2a0.000a0.902a3.163
    b0.455b0.557b1.217
    c0.354c1.552c0.128
    d0.011d1.461d3.843
    DownLoad: CSV

    表 2  4种有毒气体在单层VS2结构和Mo原子掺杂结构表面的Ead, 吸附分子的Mulliken电荷(Qmolecule)和Mo原子的Mulliken电荷(QMo)和恢复时间($ \tau $)

    Table 2.  Four toxic gases in monolayer VS2 structure and Mo atom doped structure surface Ead, adsorbed molecule Mulliken charge (Qmolecule) and Mo atom Mulliken charge (QMo) and recovery time ($ \tau $).

    structure Ead/eV Qmolecule/$ e $ $ \tau /{\mathrm{s}} $ QMo/$ e $
    NH3@Mo-VS2 2.59 0.207 7.01×1030 0.16
    NH3@VS2 0.18 0.035 1.19×10–10
    NO2@Mo-VS2 2.86 –0.342 3.03×1035 0.139
    NO2@VS2 –0.06 –0.101 9.14×10–15
    HD@Mo-VS2 2.19 0.302 1.15×1024 –0.004
    HD@VS2 0.65 0.084 8.36×10–4
    sarlin@Mo-VS2 1.95 0.205 1.06×1020 0.292
    sarlin@VS2 0.50 –0.015 3.73×10–5
    DownLoad: CSV
    Baidu
  • [1]

    Guthrie F 1860 Justus Liebigs Annalen der Chemie. 113 266Google Scholar

    [2]

    Niemann A 1860 Justus Liebigs Annalen der Chemie. 113 288Google Scholar

    [3]

    Meyer V 1886 Berichte der Deutschen Chemischen Gesellschaft 19 3259Google Scholar

    [4]

    Sadeghi M 2015 Basic and Clinical Toxicology of Mustard Compounds (New York: Springer International Publishing) pp1–27

    [5]

    Qin Y, Zhang Z 2020 Phys. E Low-dimens. Syst. Nanostruct. 116 113737Google Scholar

    [6]

    Jia X, Zhang H, Zhang Z, An L 2019 Superlattice Microst. 134 106235Google Scholar

    [7]

    Lundberg J O, Weitzberg E, Gladwin M T 2008 Nat. Rev. Drug Discov. 7 156Google Scholar

    [8]

    Basharnavaz H, Habibi-Yangjeh A, Kamali S H 2019 Mater. Chem. Phys. 231 264Google Scholar

    [9]

    刘卫卫, 余建华, 潘勇 2005 化学传感器 4 52Google Scholar

    Liu W W, Yu J H, Pan Y 2005 Chem. Sensors 4 52Google Scholar

    [10]

    Hill C L 1995 Coord. Chem. Rev. 143 407Google Scholar

    [11]

    Müller A, Peters F, Pope M T 1998 Chem. Rev. 98 239Google Scholar

    [12]

    Long D L, Burkholder E, Cronin L 2007 Chem. Soc. Rev. 36 105Google Scholar

    [13]

    徐望胜 2021 博士学位论文(合肥: 中国科学技术大学)

    Xu W S 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [14]

    Ali M, Tit N 2019 Surf. Sci. 684 28Google Scholar

    [15]

    Zhao Z, Yong Y, Hu S, Li C, Kuang Y 2019 AIP Adv. 9 125308Google Scholar

    [16]

    梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞 2021 70 080701Google Scholar

    Liang T, Wang Y Y, Liu G H, Fu W Y, Wang H Z, Chen J F 2021 Acta Phys. Sin. 70 080701Google Scholar

    [17]

    Fabian A 2018 arXiv. 1803.07999 [cond-mat. mtrl-sci

    [18]

    Delley B 2000 J. Chem. Phys. 113 7756e64Google Scholar

    [19]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244e9Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865e8Google Scholar

    [21]

    Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 Phys. Chem. C 111 17977e80Google Scholar

    [22]

    Delly B J 1990 Chem. Phys. 92 508e17Google Scholar

    [23]

    Liu Z C, Gui Y G, Xu L N, Chen X P 2022 Surf. Interfaces 30 101883Google Scholar

    [24]

    Shi Z Y, Zhang J Q, Zeng W, Zhou Q 2023 Langmuir 39 4125Google Scholar

    [25]

    Eric B I, Chris A M 2016 Phys. Rev. B 94 035120Google Scholar

    [26]

    Zhang B O, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [27]

    Xiong H H, Zhang H H, Gan L 2020 J. Phys. E 126 114463Google Scholar

    [28]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [29]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

    [30]

    Chen L, Xiong Z, Cui Y, Luo H, Gao Y 2021 Appl. Surf. Sci. 542 148767Google Scholar

  • [1] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [2] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [3] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [4] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [5] Wang Yan-Li, Su Ke-He, Yan Hong-Xia, Wang Xin. Investigation of C atom doped armchair (n, n) single walled BN nanotubes with density functional theory. Acta Physica Sinica, 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [6] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [7] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [8] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [9] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [10] Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li. First-principles study of N-doped and N-V co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [11] Zhou Chuan-Cang, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Cai Lu-Gang, Zeng Le-Gui. Molten salt synthesis, V-doped and magnetic properties of columbite MnNb2O6. Acta Physica Sinica, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [12] Zhang Jian-Dong, Yang Chun, Chen Yuan-Tao, Zhang Bian-Xia, Shao Wen-Ying. A density functional theory study of absorption behavior of CO on Au-doped single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [13] Chen Xue-Feng, Qi Kai-Tian, Li Bing, Sheng Yong, Zhang Yan, Yang Chuan-Lu. Density functional theory study of silica clusters (SiO2)n-(n≤7). Acta Physica Sinica, 2010, 59(7): 4598-4601. doi: 10.7498/aps.59.4598
    [14] Zhang Rui-Zhi, Wang Chun-Lei, Li Ji-Chao, Mei Liang-Mo. Theoretical analysis of cascade levels forming in SrTiO3. Acta Physica Sinica, 2009, 58(10): 7162-7167. doi: 10.7498/aps.58.7162
    [15] Tang Chun-Mei, Chen Xuan, Deng Kai-Ming, Hu Feng-Lan, Huang De-Cai, Xia Hai-Yan. The evolution of the structure and electronic properties of the fullerene derivatives C60(CF3)n(n=2, 4, 6, 10): A density functional calculation. Acta Physica Sinica, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [16] Du Li-Ping, Chen Bao-Xue, Sun Bei, Chen Zhi, Zou Lin-Er, Hiromi Hamanaka, Mamoru Iso. Optical stopping effect of impurity-doping As2S8 glass waveguide. Acta Physica Sinica, 2008, 57(6): 3593-3599. doi: 10.7498/aps.57.3593
    [17] Bai Yu-Jie, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Chen Xuan, Tan Wei-Shi, Liu Yu-Zhen, Huang De-Cai. Density functional calculations on the geometric and electronic structures of the endohedral fullerene H2@C60 and its dimmer. Acta Physica Sinica, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [18] Jiao Yu-Qiu, Zhao Kun, Lu Gui-Wu. Density functional theory studies on spectral properties of H3PAuPh and (H3PAu)2(1,4-C6H4)2. Acta Physica Sinica, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [19] Sheng Yong, Mao Hua-Ping, Tu Ming-Jing. DFT study on the Mg-doped TinMg (n=1—10) clusters. Acta Physica Sinica, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [20] Kim Sung-Chol, Huang Zu-Fei, Ming Xing, Wang Chun-Zhong, Meng Xing, Chen Gang. Effect of bivalent metal element doping on the electronic transport properties of LiCoO2. Acta Physica Sinica, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
Metrics
  • Abstract views:  2270
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2023
  • Accepted Date:  27 August 2023
  • Available Online:  08 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回
Baidu
map