-
In this work, the formation energy, band structure, state density, differential charge density and optoelectronic properties of undoped β-Ga2O3 and Si doped β-Ga2O3 are calculated by using GGA+U method based on density functional theory. The results show that the Si-substituted tetrahedron Ga(1) is more easily synthesized experimentally, and the obtained β-Ga2O3 band gap and Ga-3d state peak are in good agreement with the experimental results, and the effective doping is more likely to be obtained under oxygen-poor conditions. After Si doping, the total energy band moves toward the low-energy end, and Fermi level enters the conduction band, showing n-type conductive characteristic. The Si-3s orbital electrons occupy the bottom of the conduction band, the degree of electronic occupancy is strengthened, and the conductivity is improved. The results from dielectric function ε2(ω) show that with the increase of Si doping concentration, the ability to stimulate conductive electrons first increases and then decreases, which is in good agreement with the quantitative analysis results of conductivity. The optical band gap increases and the absorption band edge rises slowly with the increase of Si doping concentration. The results of absorption spectra show that Si-doped β-Ga2O3 has the ability to realize the strong deep ultraviolet photoelectric detection. The calculated results provide a theoretical reference for further implementing the experimental investigation and the optimization innovation of Si-doped β-Ga2O3 and relative device design.
-
Keywords:
- GGA+U method /
- Si-doped β-Ga2O3 /
- electronic structure /
- optoelectronic property
[1] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 71 208501Google Scholar
Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] 况丹, 徐爽, 史大为, 郭建, 喻志农 2023 72 038501Google Scholar
Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar
[4] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[5] Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar
[6] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. and Technol. 31 034001Google Scholar
[7] Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar
[8] Hou Y, Jayatissa A H 2014 Sens. Actuators, B 204 310Google Scholar
[9] Zhang L Y, Yan J L, Zhang Y J, Li T, Ding X W 2012 Phys. B: Condens. Matter 407 1227Google Scholar
[10] Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P, Jessen G H 2017 Appl. Phys. Lett. 111 012103Google Scholar
[11] Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Phys. B: Condens. Matter 405 3899Google Scholar
[12] Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K, Speck J S 2017 Appl. Phys. Express 10 041102Google Scholar
[13] Yan H Y, Guo Y R, Song Q G, Chen Y F 2014 Phys. B: Condens. Matter 434 181Google Scholar
[14] Chen Z W, Wang X, Noda S, Saito K, Tanaka T, Nishio M, Arita M, Guo Q X 2016 Superlattices Microstruct. 90 207Google Scholar
[15] Guo Q X, Nishihagi K, Chen Z W, Saito K, Tanaka T 2017 Thin Solid Films 639 123Google Scholar
[16] Hu D Q, Wang Y, Zhuang S W, Dong X, Zhang Y T, Yin J Z, Zhang B L, Lv Y J, Feng Z H, Du G T 2018 Ceram. Int. 44 3122Google Scholar
[17] Xu C X, Liu H, Pan X H, Ye Z Z 2020 Opt. Mater. 108 110145Google Scholar
[18] Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar
[19] Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Phys. B: Condens. Matter 404 4854Google Scholar
[20] Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M, Fornari R 2014 J. Cryst. Growth 401 665Google Scholar
[21] 张易军, 闫金良, 赵刚, 谢万峰 2011 60 037103Google Scholar
Zhang Y J, Yan J L, Zhao G, Xie W F 2011 Acta Phys. Sin. 60 037103Google Scholar
[22] Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar
[23] Li Y, Yang C H, Wu L Y, Zhang R 2017 Mod. Phys. Lett. B 31 1750172Google Scholar
[24] Dang J N, Zheng S W, Chen L, Zheng T 2019 Chin. Phys. B 28 016301Google Scholar
[25] 马海林, 苏庆 2014 63 116701Google Scholar
Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar
[26] Dong L P, Jia R X, Xin B, Peng B, Zhang Y M 2017 Sci. Rep. 7 40160Google Scholar
[27] Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Sheng Z Q, Yi Z G 2012 Nanoscale Res. Lett. 7 562Google Scholar
[28] He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar
[29] Zheng T, Wang Q, Dang J N, He W, Wang L Y, Zheng S W 2020 Comput. Mater. Sci. 174 109505Google Scholar
[30] Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H, Zhang X L 2020 Chin. Phys. B 29 126301Google Scholar
[31] Kang B K, Mang S R, Go D H, Yoon D H 2013 Mater. Lett. 111 67Google Scholar
[32] Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I 2007 J. Phys. Condens. Matter 19 346211Google Scholar
[33] Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120Google Scholar
[34] Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeißer D, Weber J R, Varley J B, Van de Walle C G 2011 New J. Phys. 13 085014Google Scholar
[35] Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar
[36] Yang X Y, Wen S M, Chen D D, Li T, Zhao C W 2022 Phys. Lett. A 433 128025Google Scholar
[37] Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71Google Scholar
[38] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 72 028502Google Scholar
Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar
[39] Oshima T, Matsuyama K, Yoshimatsu K, Ohtomo A 2015 J. Cryst. Growth 421 23Google Scholar
[40] Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y 2008 Phys. Status Solidi C 5 3088Google Scholar
[41] Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15Google Scholar
[42] Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloys Compd. 488 148Google Scholar
[43] Shimamura K, Víllora E G, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 201914Google Scholar
[44] Mondal A K, Mohamed M A, Ping L K, Mohamad Taib M F, Samat M H, Mohammad Haniff M A S, Bahru R 2021 Materials (Basel). 14 604Google Scholar
[45] Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar
[46] Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255Google Scholar
[47] Reynolds D C, Look D C, Jogai B 2000 J. Appl. Phys. 88 5760Google Scholar
[48] Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102 [郑树文, 范广涵, 何苗, 赵灵智 2014 63 057102Google Scholar
Google ScholarZheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin.63 057102 [49] Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 [侯清玉, 吕致远, 赵春旺 2014 63 197102Google Scholar
Google ScholarHou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin.63 197102 [50] Liu J F, Gao S S, Li W X, Dai J F, Suo Z Q, Suo Z T 2021 Cryst. Res. Technol. 57 2100126Google Scholar
-
表 1 GGA+U方法优化后未掺杂和Si掺杂β-Ga2O3的晶格参数
Table 1. Lattice parameters of undoped and Si-doped β-Ga2O3 optimized using GGA+U method.
Models a/Å b/Å c/Å β V/Å3 Ef/eV O-Rich O-Poor β-Ga2O3 Exp.[32] 12.220 3.038 5.786 — — — — 0% 12.276 3.065 5.845 104.050 213.329 — — 1.25% 12.359 3.061 5.844 104.025 214.469 5.479 –3.301 1.67% 12.347 3.063 5.847 104.117 214.511 6.121 –2.659 2.50% 12.391 3.061 5.843 104.058 214.961 6.471 –2.309 5.00% 12.719 3.031 5.817 103.047 218.442 6.638 –2.142 -
[1] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 71 208501Google Scholar
Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] 况丹, 徐爽, 史大为, 郭建, 喻志农 2023 72 038501Google Scholar
Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar
[4] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[5] Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar
[6] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. and Technol. 31 034001Google Scholar
[7] Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar
[8] Hou Y, Jayatissa A H 2014 Sens. Actuators, B 204 310Google Scholar
[9] Zhang L Y, Yan J L, Zhang Y J, Li T, Ding X W 2012 Phys. B: Condens. Matter 407 1227Google Scholar
[10] Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P, Jessen G H 2017 Appl. Phys. Lett. 111 012103Google Scholar
[11] Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Phys. B: Condens. Matter 405 3899Google Scholar
[12] Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K, Speck J S 2017 Appl. Phys. Express 10 041102Google Scholar
[13] Yan H Y, Guo Y R, Song Q G, Chen Y F 2014 Phys. B: Condens. Matter 434 181Google Scholar
[14] Chen Z W, Wang X, Noda S, Saito K, Tanaka T, Nishio M, Arita M, Guo Q X 2016 Superlattices Microstruct. 90 207Google Scholar
[15] Guo Q X, Nishihagi K, Chen Z W, Saito K, Tanaka T 2017 Thin Solid Films 639 123Google Scholar
[16] Hu D Q, Wang Y, Zhuang S W, Dong X, Zhang Y T, Yin J Z, Zhang B L, Lv Y J, Feng Z H, Du G T 2018 Ceram. Int. 44 3122Google Scholar
[17] Xu C X, Liu H, Pan X H, Ye Z Z 2020 Opt. Mater. 108 110145Google Scholar
[18] Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar
[19] Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Phys. B: Condens. Matter 404 4854Google Scholar
[20] Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M, Fornari R 2014 J. Cryst. Growth 401 665Google Scholar
[21] 张易军, 闫金良, 赵刚, 谢万峰 2011 60 037103Google Scholar
Zhang Y J, Yan J L, Zhao G, Xie W F 2011 Acta Phys. Sin. 60 037103Google Scholar
[22] Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar
[23] Li Y, Yang C H, Wu L Y, Zhang R 2017 Mod. Phys. Lett. B 31 1750172Google Scholar
[24] Dang J N, Zheng S W, Chen L, Zheng T 2019 Chin. Phys. B 28 016301Google Scholar
[25] 马海林, 苏庆 2014 63 116701Google Scholar
Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar
[26] Dong L P, Jia R X, Xin B, Peng B, Zhang Y M 2017 Sci. Rep. 7 40160Google Scholar
[27] Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Sheng Z Q, Yi Z G 2012 Nanoscale Res. Lett. 7 562Google Scholar
[28] He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar
[29] Zheng T, Wang Q, Dang J N, He W, Wang L Y, Zheng S W 2020 Comput. Mater. Sci. 174 109505Google Scholar
[30] Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H, Zhang X L 2020 Chin. Phys. B 29 126301Google Scholar
[31] Kang B K, Mang S R, Go D H, Yoon D H 2013 Mater. Lett. 111 67Google Scholar
[32] Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I 2007 J. Phys. Condens. Matter 19 346211Google Scholar
[33] Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120Google Scholar
[34] Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeißer D, Weber J R, Varley J B, Van de Walle C G 2011 New J. Phys. 13 085014Google Scholar
[35] Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar
[36] Yang X Y, Wen S M, Chen D D, Li T, Zhao C W 2022 Phys. Lett. A 433 128025Google Scholar
[37] Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71Google Scholar
[38] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 72 028502Google Scholar
Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar
[39] Oshima T, Matsuyama K, Yoshimatsu K, Ohtomo A 2015 J. Cryst. Growth 421 23Google Scholar
[40] Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y 2008 Phys. Status Solidi C 5 3088Google Scholar
[41] Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15Google Scholar
[42] Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloys Compd. 488 148Google Scholar
[43] Shimamura K, Víllora E G, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 201914Google Scholar
[44] Mondal A K, Mohamed M A, Ping L K, Mohamad Taib M F, Samat M H, Mohammad Haniff M A S, Bahru R 2021 Materials (Basel). 14 604Google Scholar
[45] Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar
[46] Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255Google Scholar
[47] Reynolds D C, Look D C, Jogai B 2000 J. Appl. Phys. 88 5760Google Scholar
[48] Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102 [郑树文, 范广涵, 何苗, 赵灵智 2014 63 057102Google Scholar
Google ScholarZheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin.63 057102 [49] Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 [侯清玉, 吕致远, 赵春旺 2014 63 197102Google Scholar
Google ScholarHou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin.63 197102 [50] Liu J F, Gao S S, Li W X, Dai J F, Suo Z Q, Suo Z T 2021 Cryst. Res. Technol. 57 2100126Google Scholar
Catalog
Metrics
- Abstract views: 3281
- PDF Downloads: 162
- Cited By: 0