搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al掺杂的尖晶石型LiMn2O4的结构和电子性质

高潭华 刘慧英 张鹏 吴顺情 杨勇 朱梓忠

引用本文:
Citation:

Al掺杂的尖晶石型LiMn2O4的结构和电子性质

高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠

Structural and electronic properties of Al-doped spinel LiMn2O4

Gao Tan-Hua, Liu Hui-Ying, Zhang Peng, Wu Shun-Qing, Yang Yong, Zhu Zi-Zhong
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法, 在广义梯度近似(GGA)和GGA+U方法下对尖晶石型LiMn2O4及其Al掺杂 的尖晶石型LiAl0.125Mn1.875O4晶体的结构和电子性质进行了计算. 结果表明: 采用GGA方法得到尖晶石型LiMn2O4是立方晶系结构, 其中的Mn离子为+3.5价, 无法解释它的Jahn-Teller 畸变. 给出的LiMn2O4能带结构特征也与实验结果不符. 而采用GGA+U方法得到在低温下的LiMn2O4和其掺杂 体系LiAl0.125Mn1.875O4的晶体都是正交结构, 与实验一致. 也能明确地确定Mn的两种价态Mn3+/Mn4+的分布并且能够说明Mn3+O6的z方向有明显的Jahn-Teller 畸变, 而Mn4+O6则没有畸变. LiMn2O4的能带结构与实验比较也能够符合. 采用GGA+U方法对Al掺杂体系的LiAl0.125Mn1.875O4的研究表明, 用Al替换一个Mn不会明显地改变晶体的电子性质, 但可以有效地消除Al3+O6 八面体的Jahn-Teller畸变, 从而改善正极材料LiMn2O4的性能, 这与电化学实验的观察结果相一致.
    The structural and electronic properties of spinel LiMn2O4 and its Al doping system LiAl0.125Mn1.875O4 are investigated within the density functional theory in both the generalized gradient approximation (GGA) and the GGA with Hubbard U correction (GGA+U). The results from the GGA method suggest that LiMn2O4 has a cubic structure and the valences of Mn ions are all +3.5, which is unable to explain the Jahn-Teller distortions in the material. The band structure of LiMn2O4 predicted by the GGA method is also inconsistent with experimental result. With the GGA+U method, the low temperature structures of LiMn2O4 and its Al doping system LiAl0.125 Mn1.875O4 are shown to be orthogonal, the two different valence states of Mn, i.e., Mn3+/Mn4+ ions, are then determined, which is then able to explain the Jahn-Teller distortion in octahedron Mn3+O6 and the non-existence of distortion in octahedron Mn4+O6. These results are in good accordance with experimental data. Their band structures by GGA+U calculations are also consistent with experimental results. The GGA+U calculations on the LiAl0.125Mn1.875O4 indicate that with the replacement of an Mn by Al, the crystal structure and electronic properties are not significantly changed, but the Jahn-Teller distortion in octahedron Al3+O6 can be effectively eliminated, which could improve the performance of the anode materials based on LiMn2O4. The phenomenon is in consistent with the electrochemical experiments.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB935903)和福建省自然科学基金(批准号: 2008J04018)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB935903) and the Natural Science Foundation of Fujian Province, China (Grant No. 2008J04018).
    [1]

    Xu B, Meng S 2010 J. Power Sour. 195 4971

    [2]

    Ouyang C Y, Shi S Q, Lei M S 2009 J. Alloys Comp. 474 370

    [3]

    Berg H, GoÉransson K, NolaÉng B, Thomas J O 1999 J. Mater. Chem. 9 2813

    [4]

    Koyama Y, Tanaka I, Adachi H, Uchimoto Y, Wakihara M 2003 J. Electrochem. Soc. 150 A63

    [5]

    Yan W S, Wang W L, Wu M C, Wei S Q 2002 Acta Phys. Sin. 51 2302 (in Chinese) [闫文胜, 王文楼, 吴敏昌, 韦世强 2002 51 2302]

    [6]

    David W I F, Thackeray M M, De Picciotto L A, Goodenough J B 1987 J. Solid State Chem. 67 316

    [7]

    Yamada A, Tanaka M 1995 Mater. Res. Bull. 30 715

    [8]

    Kang S H, Goodenough J B 2000 Electrochem. Solid-State Lett. 3 536

    [9]

    Xia Y, Yoshio M 1996 J. Electrochem. Soc. 143 (3) 825

    [10]

    Liu W, Farrington G C, Chaput F 1996 J. Electrochem. Soc. 143 879

    [11]

    Schoonman J, Tuller H, Kelder E 1999 J. Power Sour. 81-82 44

    [12]

    Zhang D, Popov B N, White R E 1998 J. Power Sour. 76 81

    [13]

    van der Ven A, Marianetti C, Morgan D, Ceder G 2000 Solid State Ion. 135 21

    [14]

    Mishra S K, Ceder G 1999 Phys. Rev. B 59 6120

    [15]

    Massarotti V, Capsoni D, Bini M, Chiodelli G, Azzoni C B, Mozzati M C, Paleari A 1997 J. Solid State Chem. 131 94

    [16]

    Rodriguez-Carvajal J, Rousse G, Masquelier C, Hervieu M 1998 Phys. Rev. Lett. 81 4660

    [17]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 60 047108]

    [18]

    Wang J L, Ge Z Q, Li H L, Liu H F, Yu W 2011 Acta Phys. Sin. 60 047107 (in Chinese) [王江龙, 葛志启, 李慧玲, 刘洪飞, 于威 2011 60 047107]

    [19]

    Zhang H, Tang Y H, Zhou W W, Li P J, Shi S Q 2010 Acta Phys. Sin. 59 5135 (in Chinese) [张华, 唐元昊, 周薇薇, 李沛娟, 施思齐 2010 59 5135]

    [20]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Compt. Mater. Sci. 44 1243

    [21]

    Trimarchi G, Binggeli N 2005 Phys. Rev. B 71 035101

    [22]

    Kasinathan D, Kunes J, Koepernik K, Diaconu C V, Martin R L, Prodan I D, Scuseria G E, Spaldin N, Petit L, Schulthess T C, Pickett W E 2006 Phys. Rev. B 74 195110

    [23]

    Yin W G, Volja D, Ku W 2006 Phys. Rev. Lett. 96 116405

    [24]

    Kresse G, Furthmüller J 1996 Compt. Mater. Sci. 6 15

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [29]

    Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T, Sawatzky G A 1993 Phys. Rev. B 48 16929

    [30]

    Anisimov V I, Aryassetiawan F, Lichtenstein A I 1997 J. Phys.: Condens. Matter. 9 767

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Cococcioni M, Gironcoli S 2005 Phys. Rev. B 71 035105

    [33]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121

    [34]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467

    [35]

    Figgis B N, Hitchman M A 2000 Ligand Field Theory and its Applications (New York: Wiley-VCH)

    [36]

    Ouyang C Y, Deng H D, Ye Z Q, Lei M S, Chen L Q 2006 Thin Solid Films 503 268

    [37]

    Shannon R D 1976 Acta Cryst. A 32 751

  • [1]

    Xu B, Meng S 2010 J. Power Sour. 195 4971

    [2]

    Ouyang C Y, Shi S Q, Lei M S 2009 J. Alloys Comp. 474 370

    [3]

    Berg H, GoÉransson K, NolaÉng B, Thomas J O 1999 J. Mater. Chem. 9 2813

    [4]

    Koyama Y, Tanaka I, Adachi H, Uchimoto Y, Wakihara M 2003 J. Electrochem. Soc. 150 A63

    [5]

    Yan W S, Wang W L, Wu M C, Wei S Q 2002 Acta Phys. Sin. 51 2302 (in Chinese) [闫文胜, 王文楼, 吴敏昌, 韦世强 2002 51 2302]

    [6]

    David W I F, Thackeray M M, De Picciotto L A, Goodenough J B 1987 J. Solid State Chem. 67 316

    [7]

    Yamada A, Tanaka M 1995 Mater. Res. Bull. 30 715

    [8]

    Kang S H, Goodenough J B 2000 Electrochem. Solid-State Lett. 3 536

    [9]

    Xia Y, Yoshio M 1996 J. Electrochem. Soc. 143 (3) 825

    [10]

    Liu W, Farrington G C, Chaput F 1996 J. Electrochem. Soc. 143 879

    [11]

    Schoonman J, Tuller H, Kelder E 1999 J. Power Sour. 81-82 44

    [12]

    Zhang D, Popov B N, White R E 1998 J. Power Sour. 76 81

    [13]

    van der Ven A, Marianetti C, Morgan D, Ceder G 2000 Solid State Ion. 135 21

    [14]

    Mishra S K, Ceder G 1999 Phys. Rev. B 59 6120

    [15]

    Massarotti V, Capsoni D, Bini M, Chiodelli G, Azzoni C B, Mozzati M C, Paleari A 1997 J. Solid State Chem. 131 94

    [16]

    Rodriguez-Carvajal J, Rousse G, Masquelier C, Hervieu M 1998 Phys. Rev. Lett. 81 4660

    [17]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 60 047108]

    [18]

    Wang J L, Ge Z Q, Li H L, Liu H F, Yu W 2011 Acta Phys. Sin. 60 047107 (in Chinese) [王江龙, 葛志启, 李慧玲, 刘洪飞, 于威 2011 60 047107]

    [19]

    Zhang H, Tang Y H, Zhou W W, Li P J, Shi S Q 2010 Acta Phys. Sin. 59 5135 (in Chinese) [张华, 唐元昊, 周薇薇, 李沛娟, 施思齐 2010 59 5135]

    [20]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Compt. Mater. Sci. 44 1243

    [21]

    Trimarchi G, Binggeli N 2005 Phys. Rev. B 71 035101

    [22]

    Kasinathan D, Kunes J, Koepernik K, Diaconu C V, Martin R L, Prodan I D, Scuseria G E, Spaldin N, Petit L, Schulthess T C, Pickett W E 2006 Phys. Rev. B 74 195110

    [23]

    Yin W G, Volja D, Ku W 2006 Phys. Rev. Lett. 96 116405

    [24]

    Kresse G, Furthmüller J 1996 Compt. Mater. Sci. 6 15

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [29]

    Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T, Sawatzky G A 1993 Phys. Rev. B 48 16929

    [30]

    Anisimov V I, Aryassetiawan F, Lichtenstein A I 1997 J. Phys.: Condens. Matter. 9 767

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Cococcioni M, Gironcoli S 2005 Phys. Rev. B 71 035105

    [33]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121

    [34]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467

    [35]

    Figgis B N, Hitchman M A 2000 Ligand Field Theory and its Applications (New York: Wiley-VCH)

    [36]

    Ouyang C Y, Deng H D, Ye Z Q, Lei M S, Chen L Q 2006 Thin Solid Films 503 268

    [37]

    Shannon R D 1976 Acta Cryst. A 32 751

  • [1] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理:第一原理计算.  , 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] 李琳, 孙宇璇, 孙伟峰. 层状氧化钼的电子结构、磁和光学性质第一原理研究.  , 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] 刘慧英, 张秀钦, 方艺梅, 朱梓忠. T型石墨烯及其衍生物的结构与电子特性.  , 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [6] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] 高潭华. 表面氢化双层硅烯的结构和电子性质.  , 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [8] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质.  , 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 王如志, 徐利春, 严辉, 香山正宪. 含扭转晶界位错Al金属拉伸强度第一性原理预测.  , 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [11] 李荣, 罗小玲, 梁国明, 付文升. 稀土元素掺杂对VH2解氢性能的影响.  , 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [12] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [14] 徐 剑, 黄水平, 王占山, 鲁大学, 苑同锁. F掺杂SnO2电子结构的模拟计算.  , 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [15] 王松有, 段国玉, 邱建红, 贾 瑜, 陈良尧. 闪锌矿结构的PtN:一种不稳定的过渡金属氮化物.  , 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [16] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [17] 徐晓光, 王春忠, 刘 伟, 孟 醒, 孙 源, 陈 岗. Mg掺杂对Li(Co,Al)O2电子结构影响的第一原理研究.  , 2005, 54(1): 313-316. doi: 10.7498/aps.54.313
    [18] 徐晓光, 魏英进, 孟醒, 王春忠, 黄祖飞, 陈岗. Mg, Al掺杂对LiCoO2体系电子结构影响的第一原理研究.  , 2004, 53(1): 210-213. doi: 10.7498/aps.53.210
    [19] 孟 醒, 徐晓光, 刘 伟, 孙 源, 陈 岗. 钙钛矿型HoNiO3中电荷歧化的第一原理研究.  , 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [20] 刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨 勇. InSb的锂嵌入形成能第一原理计算.  , 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
计量
  • 文章访问数:  8816
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-25
  • 修回日期:  2012-03-19
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map