Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical gain properties of interfacial material PFN-Br and its application potentials in future electrically pumped organic lasers

Zhang Zhi-Yuan Xiao Zi-Han Zhu Shan Zhang Qi Xia Rui-Dong Peng Jun-Biao

Citation:

Optical gain properties of interfacial material PFN-Br and its application potentials in future electrically pumped organic lasers

Zhang Zhi-Yuan, Xiao Zi-Han, Zhu Shan, Zhang Qi, Xia Rui-Dong, Peng Jun-Biao
PDF
HTML
Get Citation
  • In this paper, the optical gain properties of the water/alcohol soluble conjugated polyelectrolyte (Poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]) (PFN-Br) and its potential applications in future electrically pumped organic lasers are revealed and systematically studied. To the best of our knowledge, no studies on the optical gain properties of PFN-Br or its prototype, poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] have been reported before. These conjugated polyelectrolytes are widely used as the interlayers in organic light emitting diodes or organic solar cells. The thickness of such an interlayer is usually less than 10 nm, which is considered not sufficient for supporting light waveguiding. Therefore, the thickness of the PFN-Br layer used in this work is increased to more than 100 nm. Through careful study, the polymer is found to possess a low threshold of amplified spontaneous emission (ASE) (~11 μJ/cm2) and a small ASE cutoff thickness (<50 nm). It is an efficient blue emission (~456 nm) gain medium. The ASE peak of the PFN-Br film is red-shifted as the thickness increases from 50 to 220 nm. By utilizing the great resistance of PFN-Br against the organic solvent, such as toluene, PFN-Br/F8BT bilayer devices on quartz and PFN-Br/MEH-PPV bilayer devices on ITO glass are fabricated and characterized. In the PFN-Br/F8BT bilayer devices, it is found that the PFN-Br interlayer has very limited influence on F8BT. The ASE threshold of F8BT increases only twice, compared with that of F8BT monolayer device, when 100-nm-thick PFN-Br layer is introduced beneath the F8BT film. No significant change in optical gain or loss is observed. Most of the extra losses in F8BT due to the introduction of PFN-Br are attributed to the larger refractive index of PFN-Br than that of quartz substrate. Furthermore, in the PFN-Br/MEH-PPV bilayer devices on ITO glass, introducing PFN-Br interlayer resulting in optimal ASE performance of MEH-PPV compared with that on bare ITO surface. The ASE threshold of MEH-PPV is reduced as much as 60% (from 402 μJ/cm2 to 160 μJ/cm2) while the PFN-Br layer is sandwiched between ITO and MEH-PPV. The PFN-Br layer modifies the waveguiding modes, and reduces the interaction between excitons and ITO electrodes. As a result, the ASE performance of MEH-PPV is improved. The findings of this report indicate that the PFN-Br is not only a good carrier transport material but also a highly-efficient gain medium. PFN-Br, combined with its advantages in different fields, is expected to play various roles in future organic electrically pumped lasers.
      Corresponding author: Zhang Qi, zq890531@163.com ; Xia Rui-Dong, iamrdxia@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 22090024, 61874058).
    [1]

    Chenais S, Forget S 2012 Polym. Int. 61 390Google Scholar

    [2]

    Yap B K, Xia R D, Campoy-Quiles M, Stavrinou P N, Bradley D D C 2008 Nat. Mater. 7 376Google Scholar

    [3]

    Kim H, Schulte N, Zhou G, Mullen K, Laquai F 2011 Adv. Mater. 23 894Google Scholar

    [4]

    Feng Z J, Cheng Z, Jin H X, Lu P 2022 J. Mater. Chem. C Mater. 10 4497Google Scholar

    [5]

    Sarma M, Chen L M, Chen Y S, Wong K T 2022 Mater. Sci. Eng. R Rep. 150 100689Google Scholar

    [6]

    Al-Azzawi A G S, Aziz S B, Dannoun E M A, Iraqi A, Nofal M M, Murad A R, Hussein A M 2023 Polymers 15 164Google Scholar

    [7]

    Li B, Yang X, Li S Y, Yuan J Y 2023 Energy Environ. Sci. 16 723Google Scholar

    [8]

    Wang J J, Wen S G, Hu J, Han J H, Yang C P, Li J F, Bao X C, Yan S K 2022 Chem. Eng. J. 452 139462Google Scholar

    [9]

    Yazdani S A, Mikaeili A, Bencheikh F, Adachi C 2022 Jpn. J. Appl. Phys. 61 074003Google Scholar

    [10]

    Zhang Q, Tao W W, Huang J S, Xia R D, Cabanillas-Gonzalez J 2021 Adv. Photonics. Res. 2 2000155Google Scholar

    [11]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 6 591Google Scholar

    [12]

    Zhao Y Y, Zhang Q W, Liu Y F, Lv C, Guo S, Liu X P, Bi Y G, Li H W, Wu Y Q 2022 Org. Electron. 109 106620Google Scholar

    [13]

    Feng C, Wang X J, He Z C, Cao Y 2021 Sol. RRL 5 2000753Google Scholar

    [14]

    Hsu F C, Lin Y A, Li C P 2021 Org. Electron. 89 106008Google Scholar

    [15]

    Li M Q, Jiang J X, Ning Y J, Zhao S L, Masri W F A, Wageh S, Al-Ghamdi A 2022 Synth. Met. 289 117122Google Scholar

    [16]

    Hu Z C, Zhang K, Huang F, Cao Y 2015 Chem. Commun. 51 5572Google Scholar

    [17]

    Huang F, Wu H B, Wang D, Yang W, Cao Y 2004 Chem. Mater. 16 708Google Scholar

    [18]

    Wu H B, Huang F, Mo Y Q, Yang W, Wang D L Peng J B, Cao Y 2004 Adv. Mater. 16 1826Google Scholar

    [19]

    Fu J F, Yuan L G, Ling F, Duan R M, Chen Q Y, Ma H, Zhou M, Song B, Zhou Y, Li Y F 2020 J. Power Sources 449 227474Google Scholar

    [20]

    Xiong X, Xue X N, Zhang M, Hao T Y, Han Z Y, Sun Y Y, Zhang, Y M, Liu F, Pei S P, Zhu L 2021 ACS Energy Lett. 6 3582Google Scholar

    [21]

    Ohisa S, Kato T, Takahashi T, Suzuki M, Hayashi Y, Koganezawa T, McNeill C R, Chiba T, Pu Y J, Kido J 2018 ACS Appl. Mater. Interfaces 10 17318Google Scholar

    [22]

    Stevens M A, Silva C, Russell D M, Friend R H 2001 Phys. Rev. B 63 165213Google Scholar

    [23]

    Xia R D, Heliotis G, Bradley D D C 2003 Appl. Phys. Lett. 82 3599Google Scholar

    [24]

    Hayes G R, Samuel I D W, Phillips R T 1997 Synth. Met. 84 889Google Scholar

    [25]

    Kretsch K P, Belton C, Lipson S, Blau W J, Henari F Z, Rost H, Pfeiffer S, Teuschel, A, Tillmann H, Horhold H H 1999 J. Appl. Phys. 86 6155Google Scholar

    [26]

    Calzado E M, Villalvilla J M, Boj P G, Quintana J A, Diaz-Garcia M A 2005 J. Appl. Phys. 97 093103Google Scholar

    [27]

    Anni M, Perulli A, Monti G 2012 J. Appl. Phys. 111 093109Google Scholar

    [28]

    Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W 2002 Appl. Phys. Lett. 81 415Google Scholar

    [29]

    Peng X, Liu L Y, Wu J F, Li Y G, Hou Z J, Xu L, Wang W C, Li F M 2000 Opt. Lett. 25 314Google Scholar

    [30]

    Feng Y J, Yu X L, Zhang R, Wu J W, Zhang P, Chen S J, Zhang, D K 2017 J. Alloys Compd. 729 513Google Scholar

    [31]

    杜惠军, 李睿, 骆逸夫, 王竹君, 吴霞, 伊书颖, 皮明雨, 张丁可 2019 中国科学: 化学 49 1475

    Du H J, Li R, Luo Y F, Wang Z J, Wu X, Yi S Y, Pi M Y, Zhang D K 2019 Sci. Sin. Chim. 49 1475

    [32]

    Lahoz F, Oton C J, Capuj N, Ferrer-Gonzalez M, Cheylan S, Navarro-Urrios D 2009 Opt. Express 17 16766Google Scholar

    [33]

    Pauchard M, Swensen J, Moses D, Heeger A J, Perzon E, Andersson M R 2003 J. Appl. Phys. 94 3543Google Scholar

    [34]

    Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Amann M C, Scherf U 1999 J. Appl. Phys. 85 1124Google Scholar

    [35]

    Reufer M, Feldmann J, Rudati P, Ruhl A, Muller D, Meerholz K, Karnutsch C, Gerken M, Lemmer U 2005 Appl. Phys. Lett. 86 221102Google Scholar

    [36]

    Therezio E M, Hidalgo A A, Oliveira O N, Silva R A, Marletta A 2015 J. Braz. Chem. Soc. 26 1798Google Scholar

  • 图 1  在不同基底上利用PFN-Br做界面层, 改善常见非极性溶剂可溶聚合物增益介质性能的制备过程示意图

    Figure 1.  Schematic diagram of fabrication processes of using PFN-Br as interlayer for modifying gain properties of the common non-polar solvent soluble polymeric gain mediums.

    图 2  (a) PFN-Br薄膜的原子力显微镜(AFM)图; (b)甲苯冲涂后的PFN-Br薄膜AFM图

    Figure 2.  (a) Atomic force microscope (AFM) diagram of PFN-Br film; (b) AFM diagram of PFN-Br film after toluene impact coating.

    图 3  ASE测试光路图

    Figure 3.  Scheme of light path in ASE test.

    图 4  (a) PFN-Br薄膜的吸收和PL光谱; (b) F8BT薄膜的吸收、PL光谱和ASE光谱; (c) MEH-PPV薄膜的吸收、PL光谱和ASE光谱

    Figure 4.  (a) Absorption and PL spectra of PFN-Br film; (b) absorption, PL, and ASE spectra of F8BT film; (c) absorption, PL, and ASE spectra of MEH-PPV film.

    图 5  (a) PFN-Br薄膜(120 nm)的FWHM和输出强度随泵浦能量密度的变化; (b)不同泵浦能量下, PFN-Br的归一化发射光谱

    Figure 5.  (a) FWHM and output intensity of PFN-Br thin film (120 nm) as a function of pump energy density; (b) normalized emission spectra of PFN-Br at different pump energy density.

    图 6  (a)不同厚度的PFN-Br薄膜的ASE光谱; (b) PFN-Br薄膜的ASE阈值和ASE波长随膜厚的变化

    Figure 6.  (a) ASE spectra of PFN-Br films with different thicknesses; (b) ASE threshold and ASE wavelength of PFN-Br films as a function of film thickness.

    图 7  在石英基底上, 引入不同厚度PFN-Br界面层条件下, 测得的F8BT薄膜发射谱的(a) FWHM和(b)峰位强度随泵浦能量变化的示意图

    Figure 7.  (a) FWHM and (b) peak intensities under different pump energies measured in F8BT films on quartz substrates with inserted PFN-Br interlayers of various thickness values.

    图 8  在石英基底上, 不同PFN-Br厚度上F8BT薄膜的ASE光谱

    Figure 8.  ASE spectra of F8BT films on quartz with inserted PFN-Br interlayers of different thickness values.

    图 9  F8BT单层和PFN-Br(50 nm)/F8BT双层器件中F8BT薄膜的损耗

    Figure 9.  Loss coefficient of F8BT in monolayer and PFN-Br (50 nm)/F8BT bilayer structures.

    图 10  MEH-PPV在石英、玻璃以及在引入不同厚度PFN-Br界面层条件下ITO玻璃上测得的(a)发射谱半峰宽以及(b)发射峰强度随泵浦能量的变化

    Figure 10.  (a) FWHM and (b) peak intensities measured in MEH-PPV films on ITO glass with inserted PFN-Br interlayers of different film thickness, compared with MEH-PPV monolayer on quartz and glass.

    图 11  MEH-PPV薄膜在不同基底上以及在不同厚度PFN-Br薄膜上(ITO玻璃基底)的ASE光谱

    Figure 11.  ASE spectra of MEH-PPV monolayer on different substrates and in bilayer devices with inserted PFN-Br interlayers of different thickness on ITO glass.

    图 12  ITO基底的吸收光谱, 以及MEH-PPV薄膜分别在ITO玻璃和石英基底上的吸收光谱(已除去基底的吸收背景, 如插图)和PL光谱

    Figure 12.  Absorption spectra of ITO substrates; the absorption spectra (small illustration) and PL spectra of MEH-PPV thin films on ITO glass and quartz, respectively.

    表 1  不同溶液浓度和转速制备的薄膜

    Table 1.  Thin films prepared at different solution concentrations and rotational speeds.

    材料 溶液浓度/
    (mg·mL–1)
    转速/(r·min–1) 膜厚/nm
    PFN-Br 3 2000 15
    PFN-Br 4 2000 30
    PFN-Br 5 2000 50
    PFN-Br 6 2000 65
    PFN-Br 7 2000 100
    PFN-Br 12 4000 120
    PFN-Br 12 3000 130
    PFN-Br 12 2000 160
    PFN-Br 12 1500 170
    PFN-Br 12 1000 220
    F8BT 25 2000 160
    MEH-PPV 25 2000 210
    DownLoad: CSV
    Baidu
  • [1]

    Chenais S, Forget S 2012 Polym. Int. 61 390Google Scholar

    [2]

    Yap B K, Xia R D, Campoy-Quiles M, Stavrinou P N, Bradley D D C 2008 Nat. Mater. 7 376Google Scholar

    [3]

    Kim H, Schulte N, Zhou G, Mullen K, Laquai F 2011 Adv. Mater. 23 894Google Scholar

    [4]

    Feng Z J, Cheng Z, Jin H X, Lu P 2022 J. Mater. Chem. C Mater. 10 4497Google Scholar

    [5]

    Sarma M, Chen L M, Chen Y S, Wong K T 2022 Mater. Sci. Eng. R Rep. 150 100689Google Scholar

    [6]

    Al-Azzawi A G S, Aziz S B, Dannoun E M A, Iraqi A, Nofal M M, Murad A R, Hussein A M 2023 Polymers 15 164Google Scholar

    [7]

    Li B, Yang X, Li S Y, Yuan J Y 2023 Energy Environ. Sci. 16 723Google Scholar

    [8]

    Wang J J, Wen S G, Hu J, Han J H, Yang C P, Li J F, Bao X C, Yan S K 2022 Chem. Eng. J. 452 139462Google Scholar

    [9]

    Yazdani S A, Mikaeili A, Bencheikh F, Adachi C 2022 Jpn. J. Appl. Phys. 61 074003Google Scholar

    [10]

    Zhang Q, Tao W W, Huang J S, Xia R D, Cabanillas-Gonzalez J 2021 Adv. Photonics. Res. 2 2000155Google Scholar

    [11]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 6 591Google Scholar

    [12]

    Zhao Y Y, Zhang Q W, Liu Y F, Lv C, Guo S, Liu X P, Bi Y G, Li H W, Wu Y Q 2022 Org. Electron. 109 106620Google Scholar

    [13]

    Feng C, Wang X J, He Z C, Cao Y 2021 Sol. RRL 5 2000753Google Scholar

    [14]

    Hsu F C, Lin Y A, Li C P 2021 Org. Electron. 89 106008Google Scholar

    [15]

    Li M Q, Jiang J X, Ning Y J, Zhao S L, Masri W F A, Wageh S, Al-Ghamdi A 2022 Synth. Met. 289 117122Google Scholar

    [16]

    Hu Z C, Zhang K, Huang F, Cao Y 2015 Chem. Commun. 51 5572Google Scholar

    [17]

    Huang F, Wu H B, Wang D, Yang W, Cao Y 2004 Chem. Mater. 16 708Google Scholar

    [18]

    Wu H B, Huang F, Mo Y Q, Yang W, Wang D L Peng J B, Cao Y 2004 Adv. Mater. 16 1826Google Scholar

    [19]

    Fu J F, Yuan L G, Ling F, Duan R M, Chen Q Y, Ma H, Zhou M, Song B, Zhou Y, Li Y F 2020 J. Power Sources 449 227474Google Scholar

    [20]

    Xiong X, Xue X N, Zhang M, Hao T Y, Han Z Y, Sun Y Y, Zhang, Y M, Liu F, Pei S P, Zhu L 2021 ACS Energy Lett. 6 3582Google Scholar

    [21]

    Ohisa S, Kato T, Takahashi T, Suzuki M, Hayashi Y, Koganezawa T, McNeill C R, Chiba T, Pu Y J, Kido J 2018 ACS Appl. Mater. Interfaces 10 17318Google Scholar

    [22]

    Stevens M A, Silva C, Russell D M, Friend R H 2001 Phys. Rev. B 63 165213Google Scholar

    [23]

    Xia R D, Heliotis G, Bradley D D C 2003 Appl. Phys. Lett. 82 3599Google Scholar

    [24]

    Hayes G R, Samuel I D W, Phillips R T 1997 Synth. Met. 84 889Google Scholar

    [25]

    Kretsch K P, Belton C, Lipson S, Blau W J, Henari F Z, Rost H, Pfeiffer S, Teuschel, A, Tillmann H, Horhold H H 1999 J. Appl. Phys. 86 6155Google Scholar

    [26]

    Calzado E M, Villalvilla J M, Boj P G, Quintana J A, Diaz-Garcia M A 2005 J. Appl. Phys. 97 093103Google Scholar

    [27]

    Anni M, Perulli A, Monti G 2012 J. Appl. Phys. 111 093109Google Scholar

    [28]

    Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W 2002 Appl. Phys. Lett. 81 415Google Scholar

    [29]

    Peng X, Liu L Y, Wu J F, Li Y G, Hou Z J, Xu L, Wang W C, Li F M 2000 Opt. Lett. 25 314Google Scholar

    [30]

    Feng Y J, Yu X L, Zhang R, Wu J W, Zhang P, Chen S J, Zhang, D K 2017 J. Alloys Compd. 729 513Google Scholar

    [31]

    杜惠军, 李睿, 骆逸夫, 王竹君, 吴霞, 伊书颖, 皮明雨, 张丁可 2019 中国科学: 化学 49 1475

    Du H J, Li R, Luo Y F, Wang Z J, Wu X, Yi S Y, Pi M Y, Zhang D K 2019 Sci. Sin. Chim. 49 1475

    [32]

    Lahoz F, Oton C J, Capuj N, Ferrer-Gonzalez M, Cheylan S, Navarro-Urrios D 2009 Opt. Express 17 16766Google Scholar

    [33]

    Pauchard M, Swensen J, Moses D, Heeger A J, Perzon E, Andersson M R 2003 J. Appl. Phys. 94 3543Google Scholar

    [34]

    Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Amann M C, Scherf U 1999 J. Appl. Phys. 85 1124Google Scholar

    [35]

    Reufer M, Feldmann J, Rudati P, Ruhl A, Muller D, Meerholz K, Karnutsch C, Gerken M, Lemmer U 2005 Appl. Phys. Lett. 86 221102Google Scholar

    [36]

    Therezio E M, Hidalgo A A, Oliveira O N, Silva R A, Marletta A 2015 J. Braz. Chem. Soc. 26 1798Google Scholar

  • [1] Pan Guo-Xing, Li Tian, Tang Guo-Qiang, Zhang Fa-Pei. Growth and carrier transport properties of highly oriented films of the semiconducting polymers via solution dip-casting. Acta Physica Sinica, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [2] Liu Li-Juan, Kong Xiao-Bo, Liu Yong-Gang, Xuan Li. Enhancement of conversion efficiency for an organic semiconductor laser based on a holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [3] Luo Yi, Wang Xiao-Lin, Zhang Han-Wei, Su Rong-Tao, Ma Peng-Fei, Zhou Pu, Jiang Zong-Fu. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [4] Chi Lang, Fei Hong-Tao, Wang Teng, Yi Jian-Peng, Fang Yue-Ting, Xia Rui-Dong. A highly sensitive chemosensor for solution based on organic semiconductor laser gain media. Acta Physica Sinica, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [5] Dai Qin, Wu Jie, Wu Xiao-Jiao, Wu Ri-Na, Peng Zeng-Hui, Li Da-Yu. Study of laser action in dye-doped polymer dispersed cholesteric liquid crystal film. Acta Physica Sinica, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [6] Sun Kai, He Zhi-Qun, Liang Chun-Jun. Effect of multiple temperature-step annealing on the performances of polymer solar cells. Acta Physica Sinica, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [7] Liu Li-Juan, Huang Wen-Bin, Diao Zhi-Hui, Zhang Gui-Yang, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Low threshold distributed feedback laser based on scaffolding morphologic and holographic polymer dispersed liquid crystal gratings. Acta Physica Sinica, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [8] Gao Bo-Wen, Gao Chao, Que Wen-Xiu, Wei Wei. Recent development of polymer/fullerene photovoltaic cells. Acta Physica Sinica, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [9] Ji Xuan-Mang, Jiang Qi-Chang, Liu Jin-Song. Separate spatial soliton pairs in biased series photorefractive polymer circuit. Acta Physica Sinica, 2011, 60(3): 034212. doi: 10.7498/aps.60.034212
    [10] Deng Shu-Peng, Li Wen-Cui, Huang Wen-Bin, Liu Yong-Gang, Peng Zeng-Hui, Lu Xing-Hai, Xuan Li. All-organic two-dimensional photonic crystal laser based on holographic polymer dispersed liquid crystals. Acta Physica Sinica, 2011, 60(8): 086103. doi: 10.7498/aps.60.086103
    [11] Zou Jian-Hua, Lan Lin-Feng, Xu Rui-Xia, Yang Wei, Peng Jun-Biao. Integration of organic thin-film transistor and polymer light-emitting diodes. Acta Physica Sinica, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [12] Xu Deng. Stimulated emission properties of an organic salt-doped polymer film in microcavity. Acta Physica Sinica, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [13] Xie Jiang, Wen Jian-Zhong, Wang Guo-Ping, Wang Jian-Bo. Large area deposition of homogeneous Ag nanoparticles on polymeric surface and their applications. Acta Physica Sinica, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [14] Fu Ji-Yong, Ren Jun-Feng, Liu De-Sheng, Xie Shi-Jie. Spin polarization study on one-dimensional ferromagnetic metal/conjugated polymers. Acta Physica Sinica, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [15] HOU CHUN-FENG, ABDURUSUL, DU CHUN-GUANG, SUN XIU-DONG, LI SHI-QUN. SPATIAL SOLITONS IN PHOTOREFRACTIVE ORGANIC POLYMERS. Acta Physica Sinica, 2001, 50(11): 2159-2165. doi: 10.7498/aps.50.2159
    [16] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [17] XU ZE-DA, CAI ZHI-GANG, ZHANG LING-ZHI, LIU YAN-FA, YANG JIE, SHE WEI-LONG, ZHOU JIAN-YING. PATTERN FORMATION AND QUASICRYSTAL STRUTURE IN AZOBENZENE POLYMER FILM. Acta Physica Sinica, 2000, 49(6): 1091-1093. doi: 10.7498/aps.49.1091
    [18] REN LI-YONG, YAO BAO-LI, HOU XUN, YI WEN-HUI, WANG MIN-QIANG. EXPERIMENT AND THEORY ON DIFFRACTION FROM LASER-INDUCED PHASE-HOLE IN POLYMER FI LM. Acta Physica Sinica, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
    [19] WU CHANG-QIN, ZHANG YU-ZHONG, FU RONG-TANG, SUN XIN. A PRIMARY MODEL INVESTIGATION OF ORGANIC FERROMAGNETS. Acta Physica Sinica, 1999, 48(4): 713-720. doi: 10.7498/aps.48.713
    [20] FU RONG-TANG, WANG XIAO-DONG, SUN XIN, Y.KAWAZOE. AB INITIO INVESTIGATIONS IN ORGANIC FERROMAGNET. Acta Physica Sinica, 1998, 47(11): 1840-1846. doi: 10.7498/aps.47.1840
Metrics
  • Abstract views:  2792
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2023
  • Accepted Date:  25 July 2023
  • Available Online:  05 September 2023
  • Published Online:  05 November 2023

/

返回文章
返回
Baidu
map