-
In this paper, a new four-electrode arc discharge device with large constant temperature region is designed, which is used to prepared high-quality off-axis helical long-period fiber grating. The larger constant temperature heating area is more conducive to releasing the stress of optical fiber, so that the prepared device is less off-axis. In order to show that low off-axis is a key parameter of high-quality off-axis helical long-period fiber grating, the effects of single mode fiber on transmission spectrum of off-axis helical long-period fiber grating under different coupling lengths, pitches, core refractive indexes, cladding refractive indexes, core diameters, cladding diameters and off-axis quantity are simulated by using beam propagation method. Since traditional methods are difficult to measure the off-axis helical long-period fiber grating with small off-axis quantity, the off-axis quantity of the prepared device is estimated by using the method of spectral comparison and back-thrust off-axis quantity in this work. The off-axis helical long-period fiber grating is prepared by using the established processing device. The off-axis quantities of the prepared devices are about 0.12, 0.13 and 0.16 µm, respectively, according to the comparison between the simulated transmission spectrum and the actual spectrum. Finally, experiments on the torsional resistance and repeatability of the off-axis helical long-period fiber grating prepared by the device are carried out. The experimental results show that the prepared grating has certain torsional resistance and good spectral repeatability.
-
Keywords:
- off-axis helical long period fiber grating /
- four-electrode arc method /
- large constant temperature field /
- off-axis value
[1] Yang L, Xue L L, Su J, Qian J R 2011 Chin. Opt. Lett. 9 070603Google Scholar
[2] Xu H X, Yang L 2013 Opt. Lett. 38 1978Google Scholar
[3] Zhu C L, Wang L, Zhao H, Bing Z H, Zhao Y, Li H P 2022 Opt. Commun. 503 127452Google Scholar
[4] Rao X F, Yang L, Su J, Ban Q M, Deng X, Wang W 2022 Opt. Lett. 47 5758Google Scholar
[5] Ma C, Wang D, Deng H, Yuan L B 2022 Opt. Fiber. Technol. 73 103019Google Scholar
[6] Liu Y Q, Liu Q, Chiang K S 2009 Opt. Lett. 34 1726Google Scholar
[7] Ryu H S, Park Y, Oh S T, Chung Y, Kim D Y 2003 Opt. Lett. 28 155Google Scholar
[8] Wang Y P, Xiao L M, Wang D N, Jin W 2007 Opt. Lett. 32 1035Google Scholar
[9] Fu C, Ni Y Q, Sun T, Wang Y, Ding S, Vidakovic M 2021 Adv. Struct. Eng. 24 1248Google Scholar
[10] Zhao Y Y, Liu S, Luo J X, Chen Y P, Fu C L, Xiong C, Wang Y, Jing S Y, Bai Z Y, Liao C R, Wang Y P 2020 J. Lightwave Technol. 38 2504Google Scholar
[11] Liu Y, Yuan L B 2020 Optik 223 165557Google Scholar
[12] Gao K Y, Zhang Z, Huang B, Hao H, Zhao H, Wang P, Li H P 2022 J Opt. Soc. Am. B 39 1075Google Scholar
[13] Shen X, Hu X W, Yang L Y, Dai N L, Wu J J, Zhang F F, Peng J G, Li H Q, Li J Y 2017 Opt. Express 25 10405Google Scholar
[14] Jiang C, Liu Y Q, Zhao Y H, Mou C B, Wang T Y 2019 J. Lightwave Technol. 37 889Google Scholar
[15] Ma C, Wang J, Yuan L B 2021 Photonics 8 193Google Scholar
[16] Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightwave Technol. 21 1320Google Scholar
[17] Wang Y P, Chen J P, Rao Y J 2005 J. Opt. Soc. Am. B 22 1167Google Scholar
[18] Zhang L, Liu Y, Cao X, Wang T 2016 IEEE Sens. J. 16 4253Google Scholar
[19] Kong X D, Ren K L, Ren L Y, Liang J, Ju H J 2017 Appl. Opt. 56 4702Google Scholar
[20] Zhao H, Li H P 2021 Photonics 8 106Google Scholar
[21] Shao L P, Liu S, Zhou M, Huang Z, Bao W J, Bai Z Y, Liu Z, Zhu G X, Sun Z Y, Zhong J L, Wang Y P 2021 Opt. Express 29 43371Google Scholar
[22] Mizushima R, Detani T, Zhu C L, Wang P, Zhao H, Li H P 2021 J. Lightwave. Technol. 39 3269Google Scholar
[23] Ren K L, Ren L Y, Liang J, Kong X D, Ju H J, Xu Y P, Wu Z X 2016 Appl. Opt. 55 9675Google Scholar
[24] Liu W, Duan S, Du H, Jiang H, Sun C, Jin X, Zhao L, Geng T, Tong C, Yuan L B 2019 J. Mod. Optic. 66 1215Google Scholar
[25] Sun B, Wei W, Liao C, Zhang L, Zhang Z, Chen M Y, Wang Y 2017 IEEE Photonic. Tech. L. 29 873Google Scholar
[26] Bai Y, He Z, Bai J, Dang S 2021 Appl. Phys. B 127 1Google Scholar
[27] Liu Y, Deng H, Yuan L B 2019 Opt. Fiber. Technol. 52 101950Google Scholar
[28] Tachikura M 1984 Appl. Opt. 23 492Google Scholar
[29] Xu H X, Yang L, Han Z F, Qian J R 2013 Opt. Commun. 291 207Google Scholar
[30] Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar
[31] Fu C, Wang Y P, Liu S, Bai Z Y, Liao C, He J, Wang Y P 2019 Sensors 19 4473Google Scholar
[32] Ma M, Lian Y, Wang Y P, Lu Z 2021 Front. Phys. 9 773505Google Scholar
[33] Li Z L, Liu S, Bai Z Y, Fu C L, Zhang Y, Sun Z Y, Liu X Y, Wang Y P 2018 Opt. Express 26 24114Google Scholar
[34] Liu S, Zhou M, Shao L P, Zhang Z, Bai Z Y, Wang Y P 2022 Opt. Express 30 21085Google Scholar
-
图 1 (a) 大恒温区的四电极电弧放电OAH-LPFG加工装置; (b) OAH-LPFG结构; (c) OAH-LPFG的某一横截面; (d) 四电极加工装置结构; (e) 二电极加工装置结构
Figure 1. (a) Four electrodes arc discharge OAH-LPFG processing device in large constant temperature region; (b) OAH-LPFG structure; (c) a cross section of OAH-LPFG; (d) structure of the four-electrode machining device; (e) structure of the two-electrode machining device.
图 2 (a) 四电极未进行电弧放电时红外热像仪拍摄的温度图; (b) 四电极电弧放电加热光纤图; (c) 四电极电弧放电加热光纤时, 红外热像仪拍摄的温度图; (d) 四电极电弧放电时, 光纤加热区域最高温度的波动情况
Figure 2. (a) Temperature map taken by infrared thermal imager when arc discharge is not carried out on four electrodes; (b) four-electrode arc discharge heating fiber diagram; (c) temperature map taken by infrared thermal imager when the optical fiber is heated by four-electrode arc discharge; (d) fluctuation of the maximum temperature in the optical fiber heating region during the four-electrode arc discharge.
图 3 (a) 光纤中模式有效折射率随波长的变化. 不同光栅周期Λ及耦合长度Lc的透射光谱 (b) Λ = 900 µm, Lc = 50 mm; (c) Λ = 700 µm, Lc = 29 mm; (d) Λ = 600 µm, Lc = 17.1 mm
Figure 3. (a) Pattern effective refractive index changes with wavelength in fiber. Transmission spectrum with different grating period and coupling length: (b) Λ = 900 µm, Lc = 50 mm; (c) Λ = 700 µm, Lc = 29 mm; (d) Λ = 600 µm, Lc = 17.1 mm.
图 5 OAH-LPFG参数与透射光谱的关系 (a)耦合长度Lc; (b) 螺距
$ \varLambda $ ; (c)纤芯折射率nco; (d)包层折射率ncl; (e)纤芯直径dco; (f)包层直径dcl. 透射光谱与离轴量d的关系 (g) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ 模式; (h) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ 模式Figure 5. Relation between OAH-LPFG parameters and transmission spectrum: (a) Coupling length Lc; (b) pitch
$ \varLambda $ ; (c) core refractive index nco; (d) cladding refractive index ncl; (e) core diameter dco; (f) cladding diameter dcl. Relationship between transmission spectrum and off-axis quantity d: (g) OAH-LPFG$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ mode; (h) OAH-LPFG$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ mode.图 6 OAH-LPFG参数对透射光谱非耦合区的影响 (a)耦合长度Lc; (b)螺距
$ \varLambda $ ; (c)纤芯折射率nco; (d) 包层折射率ncl; (e)纤芯直径dco; (f) 包层直径dcl. 透射光谱非耦合区与离轴量d的关系 (g) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ 模式; (h) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ 模式Figure 6. Influence of OAH-LPFG parameters on the uncoupled region of transmission spectrum: (a) Coupling length Lc; (b) pitch
$ \varLambda $ ; (c) core refractive index nco; (d) cladding refractive index ncl; (e) core diameter dco; (f) cladding diameter dcl. Relationship between the uncoupled region of transmission spectrum and the off-axis quantity d: (g) OAH-LPFG$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ mode; (h) OAH-LPFG$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ mode图 7 基于四电极电弧得到的不同周期下制备的OAH-LPFG透射光谱 (a) 870 µm; (b) 750 µm; (c) 645 µm. (d) 透射光谱在1.21—1.30 µm波长范围的插入损耗及波动情况
Figure 7. OAH-LPFG transmission spectrum obtained based on four-electrode arc: (a) 870 µm; (b) 750 µm; (c) 645 µm. (d) Insertion loss and fluctuation of transmission spectrum in the range of wavelength 1.21–1.30 µm.
图 8 未被加工光纤与OAH-LPFG离轴量d的显微镜照片(a) 未被加工光纤; (b) 周期870 µm OAH-LPFG; (c) 周期750 µm OAH-LPFG; (d) 周期645 µm OAH-LPFG
Figure 8. Microscope observation of the unprocessed fiber and OAH-LPFG off-axis quantity d: (a) Unprocessed fiber; (b) periodic 870 µm OAH-LPFG; (c) periodic 750 µm OAH-LPFG; (d) periodic 645 µm OAH-LPFG.
图 10 (a) 康宁单模光纤的横截面的显微图像; (b) 康宁单模光纤在光波长532 nm下测得的三维折射率轮廓图; (c) 10个离轴螺旋长周期光栅样品的透射光谱图
Figure 10. (a) A microscopic image of a cross section of Corning single mode fiber; (b) 3D refractive index profile of corning single-mode fiber measured at optical wavelength 532 nm; (c) transmission spectra of 10 samples of off-axis helical long-period grating.
图 12 (a) 单模光纤横截面图; (b) 单模光纤扭转后的纵向截面图; (c) 偏芯光纤横截面图; (d) 偏芯光纤扭转后的纵向截面图
Figure 12. (a) Cross section of single-mode fiber; (b) longitudinal cross-section of single-mode fiber after torsion; (c) cross-sectional diagram of eccentric fiber; (d) longitudinal cross-section of the eccentric fiber after torsion.
图 14 (a) 顺时针时不同扭转角度的耦合峰的的透射光谱; (b) 顺时针时波长与扭曲率的依赖关系; (c) 逆时针时不同扭转角度耦合峰的透射光谱; (d) 逆时针时波长与扭曲率的依赖关系
Figure 14. (a) Transmission spectra of coupling peaks with different torsion angles in clockwise direction; (b) dependence of clockwise wavelength on the distortion rate; (c) transmission spectra of coupling peaks with different torsion angles in counterclockwise direction; (d) dependence of counterclockwise wavelength on the distortion rate.
表 1 计算参数
Table 1. Calculation parameter.
耦合长度
Lc/µm螺距
$\varLambda$/µm纤芯折射率
nco包层折射率
ncl纤芯直径dco/µm 包层直径dcl/µm 离轴量
d/µm18995—17245 870 1.461 1.457 8.7 125 0.3 15495 820—890 1.461 1.457 8.7 125 0.3 18495 870 1.4606—1.4613 1.457 8.7 125 0.3 18195 870 1.461 1.4566—1.4573 8.7 125 0.3 17745 870 1.461 1.457 8.6—9.3 125 0.3 18995 870 1.461 1.457 8.7 124.6—125.3 0.3 19495, 13245, 10245, 8045, 7095,
6345, 5795, 5495870 1.461 1.457 8.7 125 0.30—1.35 9095, 7798, 6745, 5545, 5545,
5145, 4845, 4595680 1.461 1.457 8.7 125 0.30—0.65 -
[1] Yang L, Xue L L, Su J, Qian J R 2011 Chin. Opt. Lett. 9 070603Google Scholar
[2] Xu H X, Yang L 2013 Opt. Lett. 38 1978Google Scholar
[3] Zhu C L, Wang L, Zhao H, Bing Z H, Zhao Y, Li H P 2022 Opt. Commun. 503 127452Google Scholar
[4] Rao X F, Yang L, Su J, Ban Q M, Deng X, Wang W 2022 Opt. Lett. 47 5758Google Scholar
[5] Ma C, Wang D, Deng H, Yuan L B 2022 Opt. Fiber. Technol. 73 103019Google Scholar
[6] Liu Y Q, Liu Q, Chiang K S 2009 Opt. Lett. 34 1726Google Scholar
[7] Ryu H S, Park Y, Oh S T, Chung Y, Kim D Y 2003 Opt. Lett. 28 155Google Scholar
[8] Wang Y P, Xiao L M, Wang D N, Jin W 2007 Opt. Lett. 32 1035Google Scholar
[9] Fu C, Ni Y Q, Sun T, Wang Y, Ding S, Vidakovic M 2021 Adv. Struct. Eng. 24 1248Google Scholar
[10] Zhao Y Y, Liu S, Luo J X, Chen Y P, Fu C L, Xiong C, Wang Y, Jing S Y, Bai Z Y, Liao C R, Wang Y P 2020 J. Lightwave Technol. 38 2504Google Scholar
[11] Liu Y, Yuan L B 2020 Optik 223 165557Google Scholar
[12] Gao K Y, Zhang Z, Huang B, Hao H, Zhao H, Wang P, Li H P 2022 J Opt. Soc. Am. B 39 1075Google Scholar
[13] Shen X, Hu X W, Yang L Y, Dai N L, Wu J J, Zhang F F, Peng J G, Li H Q, Li J Y 2017 Opt. Express 25 10405Google Scholar
[14] Jiang C, Liu Y Q, Zhao Y H, Mou C B, Wang T Y 2019 J. Lightwave Technol. 37 889Google Scholar
[15] Ma C, Wang J, Yuan L B 2021 Photonics 8 193Google Scholar
[16] Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightwave Technol. 21 1320Google Scholar
[17] Wang Y P, Chen J P, Rao Y J 2005 J. Opt. Soc. Am. B 22 1167Google Scholar
[18] Zhang L, Liu Y, Cao X, Wang T 2016 IEEE Sens. J. 16 4253Google Scholar
[19] Kong X D, Ren K L, Ren L Y, Liang J, Ju H J 2017 Appl. Opt. 56 4702Google Scholar
[20] Zhao H, Li H P 2021 Photonics 8 106Google Scholar
[21] Shao L P, Liu S, Zhou M, Huang Z, Bao W J, Bai Z Y, Liu Z, Zhu G X, Sun Z Y, Zhong J L, Wang Y P 2021 Opt. Express 29 43371Google Scholar
[22] Mizushima R, Detani T, Zhu C L, Wang P, Zhao H, Li H P 2021 J. Lightwave. Technol. 39 3269Google Scholar
[23] Ren K L, Ren L Y, Liang J, Kong X D, Ju H J, Xu Y P, Wu Z X 2016 Appl. Opt. 55 9675Google Scholar
[24] Liu W, Duan S, Du H, Jiang H, Sun C, Jin X, Zhao L, Geng T, Tong C, Yuan L B 2019 J. Mod. Optic. 66 1215Google Scholar
[25] Sun B, Wei W, Liao C, Zhang L, Zhang Z, Chen M Y, Wang Y 2017 IEEE Photonic. Tech. L. 29 873Google Scholar
[26] Bai Y, He Z, Bai J, Dang S 2021 Appl. Phys. B 127 1Google Scholar
[27] Liu Y, Deng H, Yuan L B 2019 Opt. Fiber. Technol. 52 101950Google Scholar
[28] Tachikura M 1984 Appl. Opt. 23 492Google Scholar
[29] Xu H X, Yang L, Han Z F, Qian J R 2013 Opt. Commun. 291 207Google Scholar
[30] Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar
[31] Fu C, Wang Y P, Liu S, Bai Z Y, Liao C, He J, Wang Y P 2019 Sensors 19 4473Google Scholar
[32] Ma M, Lian Y, Wang Y P, Lu Z 2021 Front. Phys. 9 773505Google Scholar
[33] Li Z L, Liu S, Bai Z Y, Fu C L, Zhang Y, Sun Z Y, Liu X Y, Wang Y P 2018 Opt. Express 26 24114Google Scholar
[34] Liu S, Zhou M, Shao L P, Zhang Z, Bai Z Y, Wang Y P 2022 Opt. Express 30 21085Google Scholar
Catalog
Metrics
- Abstract views: 3568
- PDF Downloads: 88
- Cited By: 0