-
镀膜长周期光纤光栅(LPFG)工作于相位匹配转折点时纤芯模与高次包层模的耦合产生单个宽带损耗峰, 其3 dB带宽取决于纤芯模和包层模之间的色散差、光栅长度以及中心波长. 研究表明,薄膜折射率和厚度的变化将影响纤芯模与包层模之间的色散差,从而影响损耗峰的3 dB带宽, 同时损耗峰中心波长亦随之移动.薄膜折射率为1.57,厚度为350 nm时,损耗峰带宽可达302 nm. 减小光栅长度在保证中心波长损耗大于6 dB的前提下可使损耗峰3 dB带宽增大至334 nm. 进一步研究表明,在均匀LPFG中偏离光栅中点的适当位置引入单个π相移 可以使带宽增大至372 nm以上.A coated long-period fiber grating (LPFG) operating at the phase-matching turning point couples the fundamental core mode to a higher-order cladding mode, producing a single broad-band whose 3dB-bandwidth is dependent on the difference in dispersion between the core mode and a cladding mode, grating length and central wavelength. The variations of film refractive index and thickness influence the difference in dispersion between the core mode and cladding mode and thus, the bandwidth of loss peak. The central wavelength of loss peak also varies with the changes of film parameters. When the film refractive index is 1.57 and the film thickness is 350 nm, the bandwidth of loss peak reaches 302 nm. The bandwidth can be further improved to 334 nm by reducing the grating length based on the fact that the loss at the central wavelength is guaranteed to be more than 6 dB. A further investigation shows that introducing a π phase shift into a uniform LPFG at a proper position that is away from the grating center can increase the bandwidth to 372 nm and more.
-
Keywords:
- long-period fiber grating /
- phase-matching turning point /
- 3 dB bandwidth /
- phase-shifted long-period fiber grating
[1] Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T, Sipe J E 1996 J. Lightwave Technol. 14 58
[2] Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249 (in Chinese) [朱涛, 饶云江, 莫秋菊 2006 55 249]
[3] Bhatia V, Vengsarkar A M 1996 Opt. Lett. 21 692
[4] Patrick H J, Kersey A D, Bucholtz F 1998 J. Lightwave Technol. 16 1606
[5] Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25
[6] Shu X W, Zhang L, Bennion I 2001 Opt. Lett. 26 1755
[7] Ramachandran S, Yan M, Crowsar L,Carra A, Wisk P, Huff R 2001 Proc. OFC'01 MC2
[8] Shu X W, Zhang L, Bennion I 2002 J. Lightwave Technol. 20 255
[9] Rees N D, James S W, Tatam R P 2002 Opt. Lett. 27 686
[10] Villar I D, Achaerandio M, Matias I R, Arregui F J 2005 Opt. Lett. 30 720
[11] Gu Z T, Xu Y P, Gao K 2006 Opt. Lett. 31 2405
[12] Erdogan T 1997 J. Lightwave Technol. 15 1277
[13] Tsao C 1992 Optical Fiber Waveguide Analysis (New York: Oxford University Press) p307
[14] Shu X W, Zhu X M, Jiang S, Shi W, Huang D X 1999 Electron. Lett. 35 1580
[15] Cusano A, Iadicicco A, Pilla P, Contessa L, Campopiano S, Cutolo A 2005 Opt. Lett. 30 2536
[16] Gu Z T, Jiang X L, Zhao X Y 2010 Acta Opt. Sin. 30 633 (in Chinese) [顾铮先, 蒋秀丽, 赵晓云 2010 光学学报 30 633]
-
[1] Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T, Sipe J E 1996 J. Lightwave Technol. 14 58
[2] Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249 (in Chinese) [朱涛, 饶云江, 莫秋菊 2006 55 249]
[3] Bhatia V, Vengsarkar A M 1996 Opt. Lett. 21 692
[4] Patrick H J, Kersey A D, Bucholtz F 1998 J. Lightwave Technol. 16 1606
[5] Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25
[6] Shu X W, Zhang L, Bennion I 2001 Opt. Lett. 26 1755
[7] Ramachandran S, Yan M, Crowsar L,Carra A, Wisk P, Huff R 2001 Proc. OFC'01 MC2
[8] Shu X W, Zhang L, Bennion I 2002 J. Lightwave Technol. 20 255
[9] Rees N D, James S W, Tatam R P 2002 Opt. Lett. 27 686
[10] Villar I D, Achaerandio M, Matias I R, Arregui F J 2005 Opt. Lett. 30 720
[11] Gu Z T, Xu Y P, Gao K 2006 Opt. Lett. 31 2405
[12] Erdogan T 1997 J. Lightwave Technol. 15 1277
[13] Tsao C 1992 Optical Fiber Waveguide Analysis (New York: Oxford University Press) p307
[14] Shu X W, Zhu X M, Jiang S, Shi W, Huang D X 1999 Electron. Lett. 35 1580
[15] Cusano A, Iadicicco A, Pilla P, Contessa L, Campopiano S, Cutolo A 2005 Opt. Lett. 30 2536
[16] Gu Z T, Jiang X L, Zhao X Y 2010 Acta Opt. Sin. 30 633 (in Chinese) [顾铮先, 蒋秀丽, 赵晓云 2010 光学学报 30 633]
计量
- 文章访问数: 7329
- PDF下载量: 502
- 被引次数: 0