Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Saturable nonlinearity and bistable solitons in nematic liquid crystals

Wang Hao-Ran Zhang Yin-Chuan Hu Wei Guo Qi

Citation:

Saturable nonlinearity and bistable solitons in nematic liquid crystals

Wang Hao-Ran, Zhang Yin-Chuan, Hu Wei, Guo Qi
PDF
HTML
Get Citation
  • The saturated nonlocal nonlinearity of positive nematic liquid crystals (NLCs) is discussed in this paper. Based on the nonlinear coupling model satisfied by the beam propagation in a positive NLC, the saturable characteristics of the nonlinear refractive index (NRI) in the cases of $1+1$ and $1+2$ dimensions are discussed separately, and the numerical solutions of saturated bistable solitons for different pre-declination angles are obtained. The saturated NRI is smaller for larger pre-deflection angles, and the center of the saturated NRI is almost flat for different pre-deflection angles in $1+2$ dimension. Solitons in the saturated case are no longer standard circular, whose waveforms in the x and y directions are slightly different. We also find that saturated bistable solitons can exist in NLCs for both $1+1$ and $1+2$ dimensions. With the increase of pre-deflection angle, the existing regions of bistable solitons decrease, while their minimum beamwidth increases. Although the beamwidths of bistable solitons are the same, they have different powers and propagation constants, and their normalized soliton waveforms differ in the $1+2$ dimensional case.
      Corresponding author: Guo Qi, guoq@scnu.edu.cn
    • Funds: Project upported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515012214) and the Science and Technology Program of Guangzhou, China (Grant No. 2019050001)
    [1]

    Wagner W G, Haus H A, Marburger J H 1968 Phys. Rev. 175 256Google Scholar

    [2]

    Snyder A W, Mitchell D J 1997 Science 276 1538Google Scholar

    [3]

    Stegeman G I A, Christodoulides D N, Segev M 2000 IEEE J. Sel. Top. Quantum Electron. 6 1419Google Scholar

    [4]

    曹觉能, 郭旗 2005 54 3688Google Scholar

    Cao J N, Guo Q 2005 Acta Phys. Sin. 54 3688Google Scholar

    [5]

    Chen Z G, Segev M, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401Google Scholar

    [6]

    Coutaz J L, Kull M 1991 J. Opt. Soc. Am. B 8 95Google Scholar

    [7]

    Mohanraj P, Sivakumar R, Arulanandham A M S, Gunavathy K V 2022 Opt. Quant. Electron. 54 386Google Scholar

    [8]

    Gatz S, Herrmann J 1991 J. Opt. Soc. Am. B 8 2296Google Scholar

    [9]

    Christian J M, Lundie M J 2017 J. Nonlinear Opt. Phys. 26 1750024Google Scholar

    [10]

    Sahoo A, Mahato D K, Govindarajan A, Sarma A K 2022 Phys. Rev. A 105 063503Google Scholar

    [11]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612Google Scholar

    [12]

    Edmundson D E, Enns R H 1992 Opt. Lett. 17 586Google Scholar

    [13]

    Edmundson D E, Enns R H 1995 Phys. Rev. A 51 2491Google Scholar

    [14]

    Enns R H, Rangnekar S, Kaplan A E 1987 Phys. Rev. A 35 466Google Scholar

    [15]

    Marburger J H, Dawes E L 1968 Phys. Rev. Lett. 21 556Google Scholar

    [16]

    Dawes E L, Marburger J H 1969 Phys. Rev. 179 862Google Scholar

    [17]

    Stegeman G I, Christodoulides D N, Segev M 2000 J. Sel. Top. Quantum Electron. 6 1419

    [18]

    Peccianti M, De Rossi A, Assantoa G, De Luca A, Umenton C, Khoo I C 2000 Appl. Phys. Lett. 77 7Google Scholar

    [19]

    Peccianti M, Brzdkiewicz K A, Assanto G 2002 Opt. Lett. 27 1460Google Scholar

    [20]

    Peccianti M, Conti C, Assantoa G 2003 J. Nonlinear Opt. Phys. Mater. 12 525Google Scholar

    [21]

    Peccianti M, Assanto G 2012 Phys. Rep. 516 147Google Scholar

    [22]

    Kravets N, Piccardi A, Alberucci A, Buchnev O, Kaczmarek M, Assanto G 2014 Phys. Rev. Lett. 113 023901Google Scholar

    [23]

    Alberucci A, Laudyn U A, Piccardi A, Kwasny M, Klus B, Karpierz M A, Assanto G 2017 Phys. Rev. E 96 012703Google Scholar

    [24]

    Conti C, Peccianti M, Assanto G 2003 Phys. Rev. Lett. 91 073901Google Scholar

    [25]

    Keller H B 1997 Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problemsions of Bifurcation Theory (New York: Academia Press) pp359–384

    [26]

    Yang J K, Lakoba T I 2008 Stud. Appl. Math. 120 265Google Scholar

    [27]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp1087–1103

    [28]

    Assanto G, Peccianti M 2003 IEEE J. Quantum Electron. 39 13Google Scholar

    [29]

    Deuling H J 1972 Mol. Cryst. Liq. Cryst. 19 123Google Scholar

  • 图 1  正性向列相液晶模型

    Figure 1.  Positive nematic liquid model

    图 2  (a)液晶盒中心处预偏角$ \theta_{0} $与电压U的关系示意图; (b)预偏角$ \hat\theta $在液晶中的分布

    Figure 2.  (a) Diagram of the exact Angle $ \theta_{0} $ and voltage U at the center of the liquid crystal cell; (b) distribution of the pre-declination angle $ \hat\theta $ in the liquid crystal

    图 3  (a)中心处线性折射率$ n_0 $$ \theta_{0} $的关系图; (b)中心处饱和非线性折射率$\Delta n_{\rm sat}$$ \theta_{0} $的关系图

    Figure 3.  (a) Center linear refractive index $ n_0 $ and $ \theta_ {0} $ diagram; (b) center of saturated nonlinear refractive index $\Delta n_ {\rm sat}$ and $ \theta_ {0} $ diagram

    图 4  (a) 1+1维不同预偏角时液晶非线性折射率与光强图; (b) 1+2维不同预偏角时液晶非线性折射率与光强图

    Figure 4.  (a) Nonlinear refractive index and light intensity map of liquid crystal with different predeclination angles in 1+1 dimension; (b) nonlinear refractive index and light intensity map of liquid crystal with different predeclination angles in 1+2 dimension

    图 5  (a) $ 1+2 $维非线性折射率; (b) $ 1+2 $维非线性折射率x方向与y方向直观对比; (c) $ 1+2 $维孤子功率与液晶中心分子最大偏角$ \theta_{\rm{m}} $的关系图

    Figure 5.  (a) $ 1+2 $ dimensional nonlinear refractive index; (b) $ 1+2 $ dimensional nonlinear refractive index x direction and y direction intuitive comparison; (c) relationship between $ 1+2 $ dimensional soliton power and the maximum declination angle of liquid crystal central molecule $ \theta_{\rm{m}} $

    图 6  $ 1+1 $维情况下 (a) $ \theta_{0}=20^{\circ} $时孤子功率与束宽关系图, (b) $ \theta_{0}=30^{\circ} $时孤子功率与束宽关系图, (c) $ \theta_{0}=45^{\circ} $时孤子功率与束宽关系图, (d) $ \theta_{0}=60^{\circ} $时孤子功率与束宽关系图, (e) $ \theta_{0}=45^{\circ} $时孤子功率与传播常数 β 关系图

    Figure 6.  In $ 1+1 $ dimension situation (a) soliton power and beam width when $ \theta_{0}=20^{\circ} $, (b) soliton power and beam width when $ \theta_{0}=30^{\circ} $, (c) soliton power and beam width when $ \theta_{0}=45^{\circ} $, (d) soliton power and beam width when $ \theta_{0}=60^{\circ} $, (e) soliton power and propagation constant when $ \theta_{0}=45^{\circ} $

    图 7  (a) $ 1+2 $x方向不同振幅孤子波形; (b) $ 1+2 $x方向相同束宽归一化孤子波形; (c) $ 1+2 $y方向不同振幅孤子波形; (d) $ 1+2 $y方向相同束宽归一化孤子波形

    Figure 7.  (a) Soliton waveforms with different amplitudes in the $ 1+2 $ dimensional x direction; (b) soliton waveforms normalized with the same beam width in the $ 1+2 $ dimensional x direction; (c) soliton waveforms with different amplitudes in the $ 1+2 $ dimensional y direction; (d) soliton waveforms normalized with the same beam width in the $ 1+2 $ dimensional y direction

    图 8  $P=1.05\; \text{mW}$, $W=1.30\;\text{μm}$时(a) $ \Delta n $分布; (b) $ \Delta n_x $$ \Delta n_y $对比; (c) $ |A|_x $$ |A|_y $对比. 当$P=113.87\; \text{mW}$, $W=1.30\;\text{μm}$时 (d) $ \Delta n $分布; (e) $ \Delta n_x $$ \Delta n_y $对比; (f) $ |A|_x $$ |A|_y $对比

    Figure 8.  When $P=1.05\; \text{mW}$, $W=1.30\;\text{μm}$ (a) $ \Delta n $ distribution; (b) compare with $ \Delta n_x $ and $ \Delta n_y $; (c) compare with $ |A|_x $ and $ |A|_y $. When $P=113.87\; \text{mW}$, $W=1.30\;\text{μm}$ (d) $ \Delta n $ distribution; (e) compare with $ \Delta n_x $ and $ \Delta n_y $; (f) compare with $ |A|_x $ and $ |A|_y $

    图 9  $ 1+1 $维情况下孤子传输图 (a) $P=0.17\; \text{mW}$, $W=1.50\; \text{μm}$时的传输图; (d) $P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$时的传输图. $ 1+2 $$P=1.05\; \text{mW}$, $W=1.30\; \text{μm}$时的孤子传输图 (b) x方向传输图; (e) y方向传输图. $ 1+2 $$P=113.87\; \text{mW}, ~ W=l1.30\; \text{μm}$时的孤子传输图 (c) x方向传输图; (f) y方向传输图

    Figure 9.  Soliton transmission diagram in $ 1+1 $ dimension (a) $P=0.17\; \text{mW}$, $W=1.50\; \text{μm}$ and (d) $P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$ transmission diagram. Soliton transmission diagram in $ 1+2 $ dimensions $P=1.05\; \text{mW}$, $W=1.30\; \text{μm}$ (b) x direction transmission diagram; (e) y direction transmission diagram. Soliton transmission diagram with $ 1+2 $ dimensions $P=113.87\; \text{mW}$, $W=1.30\; \text{μm}$ (c) x direction transmission diagram; (f) y direction transmission diagram

    图 10  $ 1+1 $$P=0.17\; \text{mW}$, $W=1.50\; \text{μm}$情况下加噪声孤子传输图 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $噪声传输前(蓝色虚线)后(红色实线) 波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $噪声传输图; (f) $ 1{\text{%}} $噪声传输前后波形对比图

    Figure 10.  $ 1 + 1 $ dimension $P=0.17\; \text{mW}, W=1.50\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 10{\text{%}} $ before(blue curve) and after (red curve) noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

    图 11  $ 1+1 $$P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$ 情况下加噪声孤子传输图 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $ 噪声传输前后波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $ 噪声传输图; (f) $ 1{\text{%}} $ 噪声传输前后波形对比图

    Figure 11.  $ 1 + 1 $ dimension $P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 11{\text{%}} $ before and after noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

    图 12  $ 1+2 $$P=1.05\; \text{mW}, W=1.30\; \text{μm}$情况下加噪声孤子传输图 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $噪声传输前后波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $噪声传输图; (f) $ 1{\text{%}} $噪声传输前后波形对比图

    Figure 12.  $ 1 + 2 $ dimension $P=1.05\; \text{mW}, W=1.30\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 10{\text{%}} $ before and after noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

    图 13  $ 1+2 $$P=113.87\; \text{mW}, W=1.30\; \text{μm}$情况下加噪声孤子传输 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $噪声传输前后波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $噪声传输图; (f) $ 1{\text{%}} $噪声传输前后波形对比图

    Figure 13.  $ 1 + 2 $ dimension $P=113.87\; \text{mW}, W=1.30\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 10{\text{%}} $ before and after noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

    Baidu
  • [1]

    Wagner W G, Haus H A, Marburger J H 1968 Phys. Rev. 175 256Google Scholar

    [2]

    Snyder A W, Mitchell D J 1997 Science 276 1538Google Scholar

    [3]

    Stegeman G I A, Christodoulides D N, Segev M 2000 IEEE J. Sel. Top. Quantum Electron. 6 1419Google Scholar

    [4]

    曹觉能, 郭旗 2005 54 3688Google Scholar

    Cao J N, Guo Q 2005 Acta Phys. Sin. 54 3688Google Scholar

    [5]

    Chen Z G, Segev M, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401Google Scholar

    [6]

    Coutaz J L, Kull M 1991 J. Opt. Soc. Am. B 8 95Google Scholar

    [7]

    Mohanraj P, Sivakumar R, Arulanandham A M S, Gunavathy K V 2022 Opt. Quant. Electron. 54 386Google Scholar

    [8]

    Gatz S, Herrmann J 1991 J. Opt. Soc. Am. B 8 2296Google Scholar

    [9]

    Christian J M, Lundie M J 2017 J. Nonlinear Opt. Phys. 26 1750024Google Scholar

    [10]

    Sahoo A, Mahato D K, Govindarajan A, Sarma A K 2022 Phys. Rev. A 105 063503Google Scholar

    [11]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612Google Scholar

    [12]

    Edmundson D E, Enns R H 1992 Opt. Lett. 17 586Google Scholar

    [13]

    Edmundson D E, Enns R H 1995 Phys. Rev. A 51 2491Google Scholar

    [14]

    Enns R H, Rangnekar S, Kaplan A E 1987 Phys. Rev. A 35 466Google Scholar

    [15]

    Marburger J H, Dawes E L 1968 Phys. Rev. Lett. 21 556Google Scholar

    [16]

    Dawes E L, Marburger J H 1969 Phys. Rev. 179 862Google Scholar

    [17]

    Stegeman G I, Christodoulides D N, Segev M 2000 J. Sel. Top. Quantum Electron. 6 1419

    [18]

    Peccianti M, De Rossi A, Assantoa G, De Luca A, Umenton C, Khoo I C 2000 Appl. Phys. Lett. 77 7Google Scholar

    [19]

    Peccianti M, Brzdkiewicz K A, Assanto G 2002 Opt. Lett. 27 1460Google Scholar

    [20]

    Peccianti M, Conti C, Assantoa G 2003 J. Nonlinear Opt. Phys. Mater. 12 525Google Scholar

    [21]

    Peccianti M, Assanto G 2012 Phys. Rep. 516 147Google Scholar

    [22]

    Kravets N, Piccardi A, Alberucci A, Buchnev O, Kaczmarek M, Assanto G 2014 Phys. Rev. Lett. 113 023901Google Scholar

    [23]

    Alberucci A, Laudyn U A, Piccardi A, Kwasny M, Klus B, Karpierz M A, Assanto G 2017 Phys. Rev. E 96 012703Google Scholar

    [24]

    Conti C, Peccianti M, Assanto G 2003 Phys. Rev. Lett. 91 073901Google Scholar

    [25]

    Keller H B 1997 Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problemsions of Bifurcation Theory (New York: Academia Press) pp359–384

    [26]

    Yang J K, Lakoba T I 2008 Stud. Appl. Math. 120 265Google Scholar

    [27]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp1087–1103

    [28]

    Assanto G, Peccianti M 2003 IEEE J. Quantum Electron. 39 13Google Scholar

    [29]

    Deuling H J 1972 Mol. Cryst. Liq. Cryst. 19 123Google Scholar

  • [1] Wang Zi-Ling, Ye Jia-Yao, Huang Zhi-Jun, Song Zhen-Peng, Li Bing-Xiang, Xiao Rui-Lin, Lu Yan-Qing. Formation and annihilation of electrically driven defects in nematic liquid crystals with negative dielectric anisotropy. Acta Physica Sinica, 2024, 73(5): 056101. doi: 10.7498/aps.73.20231655
    [2] Chen Hong-Mei, Li Shi-Wei, Li Kai-Jing, Zhang Zhi-Yong, Chen Hao, Wang Ting-Ting. Molecules structure and viscosity relationship of nematic liquid crystal and BPNN-QSAR model. Acta Physica Sinica, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [3] Zhao Lin-Yang, He Kan, Zhang Yan-Fang. Persistency of tripartite nonlocality sharing with noise. Acta Physica Sinica, 2024, 73(21): 210301. doi: 10.7498/aps.73.20241150
    [4] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao. Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [5] Lü Yue-Lan, Yin Xiang-Bao, Yang Yue, Liu Yong-Jun, Yuan Li-Bo. Tuning characteristics of fluorescent light source by dye-doped liquid crystal filled hollow fiber. Acta Physica Sinica, 2017, 66(15): 154205. doi: 10.7498/aps.66.154205
    [6] Lu Dao-Ming. Dynamics of nonlocality in an equidistance cavity coupled by fibers. Acta Physica Sinica, 2016, 65(10): 100301. doi: 10.7498/aps.65.100301
    [7] Yin Xiang-Bao, Liu Yong-Jun, Zhang Ling-Li, Lü Yue-Lan, Huo Bo-Fan, Sun Wei-Min. Liquid crystal lens with large-range electrically controllable variable focal length. Acta Physica Sinica, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [8] Wang Qiang, Guan Bao-Lu, Liu Ke, Shi Guo-Zhu, Liu Xin, Cui Bi-Feng, Han Jun, Li Jian-Jun, Xu Chen. Temperature characteristics of VCSEL with liquid crystal overlay. Acta Physica Sinica, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [9] Liu Yong-Jun, Sun Wei-Min, Liu Xiao-Qi, Yao Li-Shuang, Lu Xing-Hai, Xuan Li. Investigation of the tunable laser of one-dimensional photonic crystal with dye-doped nematic liquid crystal defect layer. Acta Physica Sinica, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [10] Guan Rong-Hua. The bistable state of a nematic liquid crystal cell with surface order-electricity polarization and flexoelectric polarization at saturation point. Acta Physica Sinica, 2011, 60(1): 016105. doi: 10.7498/aps.60.016105
    [11] Tang Xian-Zhu, Lu Xing-Hai, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Theoretical approximation study on the helix structure of ferroelectric liquid crystal. Acta Physica Sinica, 2010, 59(6): 4001-4007. doi: 10.7498/aps.59.4001
    [12] Zhang Ran, He Jun, Peng Zeng-Hui, Xuan Li. Molecular dynamics simulation of the rotational viscosity and its odd-even effect of nematic liquid crystals nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8). Acta Physica Sinica, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [13] Ren Chang-Yu, Sun Xiu-Dong, Pei Yan-Bo. Anisotropic diffraction pattern formation from a nematic liquid crystals film induced by low-power linearly polarized beam. Acta Physica Sinica, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [14] Zhou Ben-Yuan, Huang Hui, Li Gao-Xiang. Enhancement of three-mode Gaussian state light field nonlocality. Acta Physica Sinica, 2009, 58(3): 1679-1684. doi: 10.7498/aps.58.1679
    [15] Zhu Ye-Qing, Long Xue-Wen, Hu Wei, Cao Long-Gui, Yang Ping-Bao, Guo Qi. The influence of nonlocality on solitons in nematic liquid crystals. Acta Physica Sinica, 2008, 57(4): 2260-2265. doi: 10.7498/aps.57.2260
    [16] Yang Ping-Bao, Cao Long-Gui, Hu Wei, Zhu Ye-Qing, Guo Qi, Yang Xiang-Bo. Interactions between strong nonlocal optical spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [17] Long Xue-Wen, Hu Wei, Zhang Tao, Guo Qi, Lan Sheng, Gao Xi-Cun. Theoretical investigation of propagation of nonlocal spatial soliton in nematic liquid crystals. Acta Physica Sinica, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [18] Zhan Kai-Yun, Pei Yan-Bo, Hou Chun-Feng. Observation of spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [19] Liu Hong, Wang Hui. Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [20] Chen Yuan-Yuan, Wang Qi, Shi Jie-Long. Incoherent multimode spatially bistable soliton. Acta Physica Sinica, 2004, 53(4): 1070-1075. doi: 10.7498/aps.53.1070
Metrics
  • Abstract views:  3274
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2022
  • Accepted Date:  18 January 2023
  • Available Online:  09 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回
Baidu
map