Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time-space united coding spread spectrum single photon counting imaging method

Shen Shan-Shan Gu Guo-Hua Chen Qian He Rui-Qing Cao Qing-Qing

Citation:

Time-space united coding spread spectrum single photon counting imaging method

Shen Shan-Shan, Gu Guo-Hua, Chen Qian, He Rui-Qing, Cao Qing-Qing
PDF
HTML
Get Citation
  • In this paper, we demonstrate a new imaging architecture called time-space united coding spread spectrum single photon counting imaging technique by combining the space coding based single-pixel imaging technology and spread spectrum time coding based scanning imaging technology. This method has the advantages of range ambiguity-free and large time-bandwidth product. Under the interference of noise, this method can accurately restore depth images. In this work, the time-space united correlation nonlinear detection model based on single photon detection, forward imaging model and signal-to-noise ratio model is derived, and the depth image is restored by convex optimization inversion algorithm. The theoretical model and simulation experiments show that compared with the traditional single pixel imaging method based on spatial coding, this method improves the quality of scene reconstruction. Using m-sequence as time coding, imaging has higher noise robustness. In addition, compared with the traditional space coding single pixel imaging technology, the imaging mean square error of the proposed method is reduced by 4/5 and the imaging mean squared error is reduced by 9/10 after introducing the second correlated method. The proposed imaging architecture in this paper may provide a new path for non-scanning lidar imaging methods.
      Corresponding author: Shen Shan-Shan, ssssoner@niit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205144, 61905108, 62005128), the Natural Science Research Project of Higher Education Institutions of Jiangsu Province, China (Grant Nos. 19KJB140010, 21KJB510049), and the Talent Introduction Foundation of Nanjing Vocational University of Industry Technology, China (Grant Nos. YK-20-03-02, YK-20-03-03).
    [1]

    Rehain P, Sua Y M, Zhu S Y, Dickson I, Muthuswamy B, Ramanathan J, Shahverdi A, Huang Y P 2020 Nat. Commun. 11 921Google Scholar

    [2]

    Tachella J, Altmann Y, Mellado N, McCarthy A, Tobin R, Buller G S, Tourneret J Y, McLaughlin S 2019 Nat. Commun. 10 4984Google Scholar

    [3]

    Brock J C, Purkis S J 2009 J. Coastal Res. 25 1Google Scholar

    [4]

    Howland G A, Lum D J, Ware M R, Howell J C 2013 Opt. Express 21 23822Google Scholar

    [5]

    Zhao Y N, Hou H Y, Han J C, Liu H C, Zhang S H, Cao D Z, Liang B L 2021 Opt. Lett. 46 4900Google Scholar

    [6]

    Radwell N, Johnson S D, Edgar M P, Higham C F, Murray-Smith R, Padget M J 2019 Appl. Phys. Lett. 115 231101Google Scholar

    [7]

    Li F Q, Chen H J, Pediredla A, Yeh C, He K, Veeraraghavan A, Cossairt O 2017 Opt. Express 11 31096

    [8]

    Liu X L, Shi J H, Sun L, Li Y H, Fan J P, Zeng G H 2020 Opt. Express 28 8132Google Scholar

    [9]

    Asmann A, Mota J F C, Stewart B D, Wallace A M 2019 IEEE Trans. Comput. Imaging 8 385

    [10]

    Misra P, Hu W, Yang M R, Duarte M, Jha S 2017 IEEE Trans. Mob. Comput. 16 2037Google Scholar

    [11]

    Krichel N J, McCarthy A, Buller G S 2010 Opt. Express 18 9192Google Scholar

    [12]

    Zhang Y F, He Y, Yang F, Luo Y, Chen W B 2016 Chin. Opt. Lett. 14 111101Google Scholar

    [13]

    Yu Y, Liu B, Chen Z 2018 Appl. Opt. 57 7733Google Scholar

    [14]

    Norman D M, Gardner C S 1988 Appl. Opt. 27 3650Google Scholar

    [15]

    Ding Y C, Wu H X, Gao X L, Wu B, Shen Y H 2022 J. Opt. Soc. Am. A 39 206

    [16]

    Hiskett P A, Parry C S, McCarthy A, Buller G S 2008 Opt. Express 16 13685Google Scholar

    [17]

    Yu Y, Liu B, Chen Z, Kang Li Z K 2020 Sensors 20 2204Google Scholar

    [18]

    Wu F, Yang L, Chen X L, Li Z H, Wu G 2022 Chin. Opt. Lett. 20 021202Google Scholar

    [19]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992Google Scholar

    [20]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p123

    [21]

    冒添逸, 陈钱, 何伟基, 庄佳衍, 邹云浩, 戴慧东, 顾国华 2016 65 08427Google Scholar

    Mao T Y, Chen Q, He W J, Zhuang J Y, Zou Y H, Dai H D, Gu G H 2016 Acta Phys. Sin. 65 08427Google Scholar

    [22]

    Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48 3261Google Scholar

    [23]

    沈姗姗, 陈钱, 何伟基, 陈云飞, 尹文也, 戴慧东 2014 光学学报 34 1012001Google Scholar

    Shen S S, Chen Q, He W J, Chen Y F, Yin W Y, Dai H D 2014 Acta Opt. Sin. 34 1012001Google Scholar

    [24]

    Dai H D, Gu G H, He W J, Liao F J, Zhuang J Y, Liu Xiao J, Chen Q 2014 Appl. Opt. 53 6619Google Scholar

    [25]

    Zierler N, Siam J 1996 Electron. Commun. Eng. J. 1996 79

    [26]

    Molisch A F 2011 Wireless Communications (2nd Ed.) (New York: John Wiley & Sons Ltd.) p334

    [27]

    Shen S S, Chen Q, He W J, Gu G H 2020 Opt. Quantum Electron. 52 2020Google Scholar

    [28]

    Shen S S, Chen Q, He W J, Wang Y Q 2017 Chin. Opt. Lett. 15 090101Google Scholar

  • 图 1  时空域联合编码扩频单光子计数成像架构

    Figure 1.  Time-space united coding spread spectrum single photon counting imaging method architecture.

    图 2  不同压缩比的时空域联合编码扩频单光子计数成像 (a) “飞机”深度真值; (b)−(g)不同压缩比的深度成像 (b) 5%, (c)15%, (d) 25%, (e) 45%, (f) 65%, (g) 85%. 颜色条表示深度数值, 单位为m

    Figure 2.  Time-space united coding spread spectrum single photon counting image with different compression proportions: (a) Depth ground truth of ‘airplane’; (b)−(g) depth maps with different compression proportions of (b) 5%, (c)15%, (d) 25%, (e) 45%, (f) 65% and (g) 85%. Colorbars show the depth with unit of meter.

    图 3  时空域联合编码扩频单光子计数成像性能模拟 (a) 1码概率为0.1的伪随机序列深度图像; (b) 1码概率为0.3的伪随机序列深度图像; (c) Gold序列的深度图像; (d) m序列的深度图像; (e) 死时间对成像性能的影响理论模拟; (f) 死时间为200 ns; (g) 死时间为20 ns; (h) 死时间为1ns. 颜色条表示深度数值, 单位为m

    Figure 3.  Time-space united coding image spread spectrum single photon counting imaging performance simulation: (a) Depth maps by pseudo-random sequences with ‘1’ bit of 0.1; (b) depth maps by pseudo-random sequences with ‘1’ bit of 0.3; (c) depth maps by Gold sequences; (d) depth maps by m-sequences; (e) theoretical simulation of dead time influence on imaging performance; (f) dead time is 200 ns; (g) dead time is 20 ns; (d) dead time is 1 ns. Colorbars show the depth information with unit of meter.

    图 4  不引入二次相关法的时空域联合编码扩频单光子计数深度成像, 码长为 (a) 2048, (b) 4096, (c) 8192, (d) 16384. 引入二次相关法的时空域联合编码扩频单光子计数深度图像, 码长为(e) 2048, (f) 4096, (g) 8192, (h)16384; (i) 传统的基于空间编码的单像素深度图像; (j) 引入二次相关法(点虚线)和不引入二次相关法(虚线)的深度MSE

    Figure 4.  Time-space united coding image spread spectrum single photon counting imaging without second correlated method by code length of (a) 2048, (b) 4096, (c) 8192, (d)16384. Depth maps simulations with second correlated method by code length of (e) 2048, (f) 4096, (g) 8192 and (h) 16384. (i) Traditional single pixel imaging method based on space coding. (j) The depth MSE with second correlated method (dot dashed line) and without second correlated method (dashed line).

    图 5  成像边缘检测 (a) 不引入二次相关法的时空域联合编码扩频单光子成像边缘检测; (b) 引入二次相关法的时空域联合编码扩频单光子计数成像边缘检测; (c) 传统的基于空间编码的单像素成像边缘检测

    Figure 5.  Image edge detection: (a) Time-space united coding spread spectrum single photon counting imaging without second correlated method image edge detection; (b) time-space united coding spread spectrum single photon counting imaging with second correlated method image edge detection; (c) traditional single pixel imaging method based on space coding image edge detection.

    图 6  单光子计数扫描成像测试图像深度重建仿真 (a) 玩偶深度真值; (b) $ {m_n} = 10 $, $ {\text{MSE = 0}}{\text{.176 m}} $, 传统的基于空间编码的单像素成像深度图; 在(c) ${m_{\rm{n}}} = 5$, $ {\text{MSE = 0}}{\text{.019 m}} $, (d) ${m_{\rm{n}}} = 8$, ${\text{MSE = 0}}{\text{.03\; m}}$, (e) $ {m_n} = 10 $, ${\text{MSE = 0}}{\text{.035 \;m}}$条件下, 不引入二次相关法的时空域联合编码扩频单光子计数深度图; 在(f) ${m_{\rm{n}}} = 5$, ${\text{MSE = 0}}{\text{.005\; m}}$, (g) ${m_{\rm{n}}} = 8$, ${\text{MSE = 0}}{\text{.011\; m}}$, (h) ${m_{\rm{n}}} = 10$, ${\text{MSE = 0}}{\text{.017 \;m}}$条件下, 引入二次相关法的时空域编码扩频单光子计数深度图, 深度单位为m

    Figure 6.  Depth reconstruction simulation by using single photon counting scanning imaging test image: (a) Ground truth of ‘doll’; (b) the depth map by traditional single pixel imaging method based on space coding image when ${m_{\rm{n}}} = 10$, ${\text{MSE = 0}}{\text{.176\; m}}$. Depth maps by time-space united coding spread spectrum single photon counting imaging without second correlated method when (c) ${m_{\rm{n}}} = 5$, ${\text{MSE = 0}}{\text{.019\; m}}$, (d) ${m_{\rm{n}}} = 8$, ${\text{MSE = 0}}{\text{.03\; m}}$ and (e) ${m_{\rm{n}}} = 10$, ${\text{MSE = 0}}{\text{.035\; m}}$. Depth maps by time-space united coding spread spectrum single photon counting imaging with second correlated method when (f) ${m_{\rm{n}}} = 5$, ${\text{MSE = 0}}{\text{.005\; m}}$, (g) ${m_{\rm{n}}} = 8$, ${\text{MSE = 0}}{\text{.011\; m}}$, and (h) ${m_{\rm{n}}} = 10$, ${\text{MSE = 0}}{\text{.017\; m}}$. The depth unit is m.

    图 7  成像边缘检测 (a) 不引入二次相关法的时空域联合编码扩频单光子成像边缘检测; (b) 引入二次相关法的时空域联合编码扩频单光子成像边缘检测; (c) 传统的基于空间编码的单像素成像边缘检测

    Figure 7.  Image edge detection: (a) Time-space united coding spread spectrum single photon counting imaging without second correlated method image edge detection; (b) time-space united coding spread spectrum single photon counting imaging with second correlated method image edge detection; (c) traditional single pixel imaging method based on space coding image edge detection.

    图 8  噪声$ {m_n} $=10不同的凸优化反演方法的图像重建 (a) TVAL3; (b) GPSR; (c) FISTA

    Figure 8.  Different convex optimization inversion methods imaging reconstruction when$ {m_n} $=10: (a) TVAL3; (b) GPSR; (c) FISTA.

    表 1  不同重建方法的性能统计

    Table 1.  Performance statistical record of different reconstruction methods.

    MSE/m Time/s
    Method${m_{\rm{n} } } = 5$ ${m_{\rm{n}}} = 10$ ${m_{\rm{n}}} = 5$ ${m_{\rm{n}}} = 10$
    TVAL30.033 0.011 3557
    GPSR0.060 0.018 1324
    FISTA0.042 0.019 1624
    DownLoad: CSV
    Baidu
  • [1]

    Rehain P, Sua Y M, Zhu S Y, Dickson I, Muthuswamy B, Ramanathan J, Shahverdi A, Huang Y P 2020 Nat. Commun. 11 921Google Scholar

    [2]

    Tachella J, Altmann Y, Mellado N, McCarthy A, Tobin R, Buller G S, Tourneret J Y, McLaughlin S 2019 Nat. Commun. 10 4984Google Scholar

    [3]

    Brock J C, Purkis S J 2009 J. Coastal Res. 25 1Google Scholar

    [4]

    Howland G A, Lum D J, Ware M R, Howell J C 2013 Opt. Express 21 23822Google Scholar

    [5]

    Zhao Y N, Hou H Y, Han J C, Liu H C, Zhang S H, Cao D Z, Liang B L 2021 Opt. Lett. 46 4900Google Scholar

    [6]

    Radwell N, Johnson S D, Edgar M P, Higham C F, Murray-Smith R, Padget M J 2019 Appl. Phys. Lett. 115 231101Google Scholar

    [7]

    Li F Q, Chen H J, Pediredla A, Yeh C, He K, Veeraraghavan A, Cossairt O 2017 Opt. Express 11 31096

    [8]

    Liu X L, Shi J H, Sun L, Li Y H, Fan J P, Zeng G H 2020 Opt. Express 28 8132Google Scholar

    [9]

    Asmann A, Mota J F C, Stewart B D, Wallace A M 2019 IEEE Trans. Comput. Imaging 8 385

    [10]

    Misra P, Hu W, Yang M R, Duarte M, Jha S 2017 IEEE Trans. Mob. Comput. 16 2037Google Scholar

    [11]

    Krichel N J, McCarthy A, Buller G S 2010 Opt. Express 18 9192Google Scholar

    [12]

    Zhang Y F, He Y, Yang F, Luo Y, Chen W B 2016 Chin. Opt. Lett. 14 111101Google Scholar

    [13]

    Yu Y, Liu B, Chen Z 2018 Appl. Opt. 57 7733Google Scholar

    [14]

    Norman D M, Gardner C S 1988 Appl. Opt. 27 3650Google Scholar

    [15]

    Ding Y C, Wu H X, Gao X L, Wu B, Shen Y H 2022 J. Opt. Soc. Am. A 39 206

    [16]

    Hiskett P A, Parry C S, McCarthy A, Buller G S 2008 Opt. Express 16 13685Google Scholar

    [17]

    Yu Y, Liu B, Chen Z, Kang Li Z K 2020 Sensors 20 2204Google Scholar

    [18]

    Wu F, Yang L, Chen X L, Li Z H, Wu G 2022 Chin. Opt. Lett. 20 021202Google Scholar

    [19]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992Google Scholar

    [20]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p123

    [21]

    冒添逸, 陈钱, 何伟基, 庄佳衍, 邹云浩, 戴慧东, 顾国华 2016 65 08427Google Scholar

    Mao T Y, Chen Q, He W J, Zhuang J Y, Zou Y H, Dai H D, Gu G H 2016 Acta Phys. Sin. 65 08427Google Scholar

    [22]

    Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48 3261Google Scholar

    [23]

    沈姗姗, 陈钱, 何伟基, 陈云飞, 尹文也, 戴慧东 2014 光学学报 34 1012001Google Scholar

    Shen S S, Chen Q, He W J, Chen Y F, Yin W Y, Dai H D 2014 Acta Opt. Sin. 34 1012001Google Scholar

    [24]

    Dai H D, Gu G H, He W J, Liao F J, Zhuang J Y, Liu Xiao J, Chen Q 2014 Appl. Opt. 53 6619Google Scholar

    [25]

    Zierler N, Siam J 1996 Electron. Commun. Eng. J. 1996 79

    [26]

    Molisch A F 2011 Wireless Communications (2nd Ed.) (New York: John Wiley & Sons Ltd.) p334

    [27]

    Shen S S, Chen Q, He W J, Gu G H 2020 Opt. Quantum Electron. 52 2020Google Scholar

    [28]

    Shen S S, Chen Q, He W J, Wang Y Q 2017 Chin. Opt. Lett. 15 090101Google Scholar

  • [1] Li Jia-Xiang, Wang Hui-Qin, Xu He-Qing, Zhang Hua, Feng Yan, Dong Mei-Tong. Reverse design of ultracompact micro-nano wavelength beam splitter based on quadratic programming algorithm. Acta Physica Sinica, 2023, 72(19): 194101. doi: 10.7498/aps.72.20230892
    [2] Yi You-Jian, Ding Fu-Cai, Zhu Ping, Zhang Dong-Jun, Liang Xiao, Sun Mei-Zhi, Guo Ai-Lin, Yang Qing-Wei, Kang Hai-Tao, Yao Xiu-Yu, Li Zhao-Liang, Xie Xing-Long, Zhu Jian-Qiang. Wavelength encoded single-shot high-spatiotemporal resolution all-optical probe. Acta Physica Sinica, 2023, 72(22): 220602. doi: 10.7498/aps.72.20230727
    [3] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [4] Wang Miao, Yang Wan-Min, Wang Xiao-Mei, Zan Ya-Ting, Chen Sen-Lin, Zhang Ming, Hu Cheng-Xi. Fabrication process and superconducting properties of recycling multi-domain GdBCO bulk superconductors using improved infiltration technique. Acta Physica Sinica, 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [5] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [6] Han Dong, Sun Fei-Yang, Lu Ji-Yuan, Song Fu-Ming, Xu Yue. Reducing dark count of single-photon avalanche diode detector with polysilicon field plate. Acta Physica Sinica, 2020, 69(14): 148501. doi: 10.7498/aps.69.20200523
    [7] Meng Wen-Dong, Zhang Hai-Feng, Deng Hua-Rong, Tang Kai, Wu Zhi-Bo, Wang Yu-Rong, Wu Guang, Zhang Zhong-Ping, Chen Xin-Yang. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection. Acta Physica Sinica, 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [8] Zhang Hai-Yan, Wang Lin-Li, Wu Chen-Yi, Wang Yu-Rong, Yang Lei, Pan Hai-Feng, Liu Qiao-Li, Guo Xia, Tang Kai, Zhang Zhong-Ping, Wu Guang. Avalanche photodiode single-photon detector with high time stability. Acta Physica Sinica, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [9] Zhang Zhi-Wei,  Zhao Cui-Lan,  Sun Bao-Quan. 1.3 μm single photon emission from InAs/GaAs quantum dots. Acta Physica Sinica, 2018, 67(23): 237802. doi: 10.7498/aps.67.20181592
    [10] Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei. Single photon detection and circular polarized emission manipulated with individual quantum dot. Acta Physica Sinica, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [11] Wang Jin-Dong, Wu Zu-Heng, Zhang Bing, Wei Zheng-Jun, Liao Chang-Jun, Liu Song-Hao. A new circuit model for avalanche photodiodes to detect infrared single photon by transient process of transmission lines. Acta Physica Sinica, 2008, 57(9): 5620-5626. doi: 10.7498/aps.57.5620
    [12] Jiao Rong-Zhen, Feng Chen-Xu, Ma Hai-Qiang. Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detector. Acta Physica Sinica, 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
    [13] Yang Li-Sen, Chen Yu-He, Lu Gai-Ling, Liu Si-Min. Generation of spacial second-harmonic in photorefrective photonic lattice. Acta Physica Sinica, 2007, 56(7): 3966-3971. doi: 10.7498/aps.56.3966
    [14] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [15] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [16] Wu Guang, Zhou Chun-Yuan, Chen Xiu-Liang, Han Xiao-Hong, Zeng He-Ping. A stable long-distance quantum key distribution system. Acta Physica Sinica, 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
    [17] Shen Jing-Ling, Zhang Cun-Lin, Hu Ying, S. P. Jamison. Chirped pulse cross-correlation for THz wave measurement. Acta Physica Sinica, 2004, 53(7): 2212-2215. doi: 10.7498/aps.53.2212
    [18] BAI BO, ZHENG JIAN, LIU WAN-DONG, YU CHANG-XUAN, JIANG XIAO-HUA, LIU SHEN-YE, ZHENG ZHI-JIAN. SECOND HARMONIC LIGHT EMISSION FROM PLASMAS PRODUCED WITH 1.053μm LASER. Acta Physica Sinica, 2001, 50(4): 726-729. doi: 10.7498/aps.50.726
    [19] Shen Xue-Min, Wang Zhao-Zhong, Shao Yu-Gui, Xue Di-Ye, Ding Jia-Yi, Xu De-Zheng, Deng Xu, Wang Jian, Wang Ya-Ming, Li You-Yi. . Acta Physica Sinica, 1995, 44(9): 1442-1448. doi: 10.7498/aps.44.1442
    [20] TAN WEI-HAN, LIN ZUN-QI, GU MIN, SHI A-YING, YU WEN-YAN, DENG XI-MING. THE INFLUENCE OF LASER FREQUENCY BANDWIDTH ON THE TIME AND SPACE STRUCTURES OF THE 2ω0 HARMONIC GENERATION. Acta Physica Sinica, 1987, 36(5): 660-667. doi: 10.7498/aps.36.660
Metrics
  • Abstract views:  3291
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2022
  • Accepted Date:  29 September 2022
  • Available Online:  27 October 2022
  • Published Online:  20 January 2023

/

返回文章
返回
Baidu
map