-
激光探针法是捕捉超快动力学过程的主要方法之一, 在等离子体物理、光化学、生物医学等领域都有着广泛的应用. 本文提出一种时间波长编码的探针光产生方案, 该方案通过级联不同相位匹配角的倍频晶体和独立的延迟线来实现时间波长编码, 具有单次高时空分辨率、高帧率、时间窗口可调范围广、时间分辨率和时间窗口参数独立可调的优点. 在实验中搭建了一套探针光产生装置, 具有247 fs的时间分辨率、4 μm的空间分辨率、4.05 THz的最高帧率、时间窗口从亚皮秒到3 ns可调, 将该装置用于捕捉飞秒激光诱导的光丝的动力学过程, 证明该探针光产生方案用于捕捉超快动力学过程的可行性. 在讨论中, 分析了探针光关键参数能达到的极限帧率为35.7 THz, 极限时间分辨率为28 fs, 时间窗口的范围可以从百飞秒到几十个纳秒进行调节. 探针光的高时空分辨率和参数互相独立可调的优点, 为多时间尺度的超快动力学过程的单次高时空分辨捕捉提供了一种可行方案.The laser probe is one of the main techniques for capturing ultrafast dynamic processes and has extensive applications in fields such as plasma physics, photochemistry, and biomedical science. In this work, a time-wavelength encoded optical probe generation scheme is proposed, which uses cascaded frequency doubling crystals with different phase-matching angles and independent delay lines to achieve time-wavelength encoding. This method offers single-shot high-spatiotemporal resolution, high frame rate, and a wide range of adjustable time windows. The temporal resolution of the optical probe depends on the pulse width of the second harmonic, which can be adjusted by changing the phase-matching angle of the frequency-doubling crystal. The time window of the optical probe is only related to the change in the delay line, which can be adjusted by changing the length of the delay line. Therefore, the time resolution and time window of the optical probe are independent of each other. An optical probe generation system is constructed with 247 fs temporal resolution, 4 μm spatial resolution, 4.05 THz maximal frame rate, and an adjustable time window from sub-picosecond to 3 ns. The three-dimensional spatiotemporal evolution process of plasma filaments is captured within a single shot by using the optical probe. The experimental results show that the ionization front of the plasma propagates forward at a velocity of
$ {\left(2.963\pm 0.024\right)\times 10}^{8}\;{\rm{m}}/{\rm{s}} $ , which is consistent with the theoretical prediction. This demonstrates the feasibility of using the probe for capturing ultrafast events. In the part of discussion, we analyze that the key parameters of the optical probe can reach a maximum frame rate of 35.7 THz, a maximum time resolution of 28 fs, and a time window range that can be adjusted from hundreds of femtoseconds to tens of nanoseconds. Finally, the optimal design parameters of the optical probe are given for different application scenarios. The optical probe generation scheme has good scalability and versatility, and can be combined with any wavelength decoding device, diffraction imaging, holographic imaging, tomography scanning, and other technologies. The high spatiotemporal resolution of the optical probe and the independent adjustability of its parameters provide a feasible solution for single-shot high spatiotemporal resolution captures of ultrafast dynamic processes on a multiple time scale.-
Keywords:
- single-shot /
- time-wavelength encoding /
- high spatiotemporal resolution /
- all-optical probe
[1] Buck A, Nicolai M, Schmid K, Sears C M S, Sävert A, Mikhailova J M, Krausz F, Kaluza M C, Veisz L 2011 Nat. Phys. 7 543Google Scholar
[2] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar
[3] Kodama R, Sentoku Y, Chen Z L, Kumar G R, Hatchett S P, Toyama Y, Cowan T E, Freeman R R, Fuchs J, Izawa Y, Key M H, Kitagawa Y, Kondo K, Matsuoka T, Nakamura H, Nakatsutsumi M, Norreys P A, Norimatsu T, Snavely R A, Stephens R B, Tampo M, Tanaka K A, Yabuuchi T 2004 Nature 432 1005Google Scholar
[4] Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar
[5] Labat M, Bielawski S, Loulergue A, Corde S, Couprie M E, Roussel E 2020 New J. Phys. 22 013051Google Scholar
[6] Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar
[7] Irimiciuc S, Boidin R, Bulai G, Gurlui S, Nemec P, Nazabal V, Focsa C 2017 Appl. Surf. Sci. 418 594Google Scholar
[8] Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586Google Scholar
[9] Luna H, Kavanagh K D, Costello J T 2007 J. Appl. Phys. 101 033302Google Scholar
[10] Harvey-Thompson A J, Lebedev S V, Patankar S, Bland S N, Burdiak G, Chittenden J P, Colaitis A, De Grouchy P, Doyle H W, Hall G N, Khoory E, Hohenberger M, Pickworth L, Suzuki-Vidal F, Smith R A, Skidmore J, Suttle L, Swadling G F 2012 Phys. Rev. Lett. 108 145002Google Scholar
[11] Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar
[12] Lu Y, Wong T T W, Chen F, Wang L D 2019 Phys. Rev. Lett. 122 193904Google Scholar
[13] Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, Kannari F, Sakuma I 2014 Nat. Photonics 8 695Google Scholar
[14] Sheinman M, Erramilli S, Ziegler L, Hong M K, Mertz J 2022 Opt. Lett. 47 577Google Scholar
[15] Li Z, Zgadzaj R, Wang X, Chang Y Y, Downer M C 2014 Nat. Commun. 5 3085Google Scholar
[16] Yeola S, Kuk D, Kim K Y 2017 J. Opt. Soc. Am. B: Opt. Phys. 35 2822
[17] Ehn A, Bood J, Li Z, Berrocal E, Alden M, Kristensson E 2017 Light-Sci. Appl. 6 e17045Google Scholar
[18] Moon J, Yoon S, Lim Y S, Choi W 2022 Opt. Express 28 4463
[19] Inoue T, Matsunaka A, Funahashi A, Okuda T, Nishio K, Awatsuji Y 2019 Opt. Lett. 44 2069Google Scholar
[20] Davidson Z E, Gonzalez-Izquierdo B, Higginson A, Lancaster K L, Williamson S D R, King M, Farley D, Neely D, McKenna P, Gray R J 2019 Opt. Express 27 4416Google Scholar
[21] Kato K 1986 IEEE J. Quantum Electron. 22 1013Google Scholar
[22] Nagy T, Simon P 2009 Opt. Express 17 8144Google Scholar
[23] Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar
[24] Gabolde P, Trebino R 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 A25Google Scholar
[25] Yu W, Sheng Z M, Feng X P, Xu Z H, Zhu J H, Wang G G 1993 J. Phys. D: Appl. Phys. 26 1141Google Scholar
[26] Kim D W, Xiao G Y, Ma G B 1997 Appl. Opt. 36 6788Google Scholar
[27] Vogel A, Noack J, Hüttman G, Paltauf G 2005 Appl. Phys. B 81 1015Google Scholar
[28] Monchoce S, Kahaly S, Leblanc A, Videau L, Combis P, Reau F, Garzella D, D’Oliveira P, Martin P, Quere F 2014 Phys. Rev. Lett. 112 145008Google Scholar
[29] Batani K, Aliverdiev A, Benocci R, Dezulian R, Amirova A, Krousky E, Pfeifer M, Skala J, Dudzak R, Nazarov W, Batani D 2021 High Power Laser Sci. Eng. 9 e47Google Scholar
-
图 3 实验装置 (a) 探针光产生装置 (BS, 分束镜; RM, 反射镜; HBS, 谐波分束镜; NDF, 中性密度衰减片; TS, 平移台; BC, 光束收集器; L1, 透镜; MO, 显微物镜); (b) 解码装置原理图(DOE, 衍射光学元件; IBPF, 干涉带通滤光片)
Fig. 3. Experimental setup: (a) Optical probe generating setup (BS, beam splitter; RM, reflecting mirror; HBS, harmonic beam splitter; NDF, neutral density filter; TS, translation stage; BC, beam collector; L1, lens; MO, microscope objective); (b) schematic of decoding device (DOE, diffractive optical element; IBPF, interference bandpass filter).
图 5 飞秒激光诱导空气成丝的动力学过程 (a) 成像系统的空间分辨率; (b) 等离子体通道中部的动力学过程; (c) 不同发次的等离子体通道尾部的动力学过程
Fig. 5. Dynamic process of femtosecond laser induced air filaments: (a) Spatial resolution of the imaging system; (b) dynamic process in the middle of the plasma channel; (c) dynamic process at the tail of the plasma channel on different shot.
表 1 不同场景中探针光的最优参数
Table 1. Optimal design of optical probe parameters in different scenarios.
场景需求 倍频晶体
厚度/mm时间分
辨率/fs帧数 帧率/
GHz时间窗
口/ps超高帧率 0.1 28 4 35700 0.112 高帧率和
高帧数2.0 186 26 5370 4.8 大时间窗口 2.0 186 26 2.6 10000 -
[1] Buck A, Nicolai M, Schmid K, Sears C M S, Sävert A, Mikhailova J M, Krausz F, Kaluza M C, Veisz L 2011 Nat. Phys. 7 543Google Scholar
[2] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar
[3] Kodama R, Sentoku Y, Chen Z L, Kumar G R, Hatchett S P, Toyama Y, Cowan T E, Freeman R R, Fuchs J, Izawa Y, Key M H, Kitagawa Y, Kondo K, Matsuoka T, Nakamura H, Nakatsutsumi M, Norreys P A, Norimatsu T, Snavely R A, Stephens R B, Tampo M, Tanaka K A, Yabuuchi T 2004 Nature 432 1005Google Scholar
[4] Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar
[5] Labat M, Bielawski S, Loulergue A, Corde S, Couprie M E, Roussel E 2020 New J. Phys. 22 013051Google Scholar
[6] Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar
[7] Irimiciuc S, Boidin R, Bulai G, Gurlui S, Nemec P, Nazabal V, Focsa C 2017 Appl. Surf. Sci. 418 594Google Scholar
[8] Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586Google Scholar
[9] Luna H, Kavanagh K D, Costello J T 2007 J. Appl. Phys. 101 033302Google Scholar
[10] Harvey-Thompson A J, Lebedev S V, Patankar S, Bland S N, Burdiak G, Chittenden J P, Colaitis A, De Grouchy P, Doyle H W, Hall G N, Khoory E, Hohenberger M, Pickworth L, Suzuki-Vidal F, Smith R A, Skidmore J, Suttle L, Swadling G F 2012 Phys. Rev. Lett. 108 145002Google Scholar
[11] Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar
[12] Lu Y, Wong T T W, Chen F, Wang L D 2019 Phys. Rev. Lett. 122 193904Google Scholar
[13] Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, Kannari F, Sakuma I 2014 Nat. Photonics 8 695Google Scholar
[14] Sheinman M, Erramilli S, Ziegler L, Hong M K, Mertz J 2022 Opt. Lett. 47 577Google Scholar
[15] Li Z, Zgadzaj R, Wang X, Chang Y Y, Downer M C 2014 Nat. Commun. 5 3085Google Scholar
[16] Yeola S, Kuk D, Kim K Y 2017 J. Opt. Soc. Am. B: Opt. Phys. 35 2822
[17] Ehn A, Bood J, Li Z, Berrocal E, Alden M, Kristensson E 2017 Light-Sci. Appl. 6 e17045Google Scholar
[18] Moon J, Yoon S, Lim Y S, Choi W 2022 Opt. Express 28 4463
[19] Inoue T, Matsunaka A, Funahashi A, Okuda T, Nishio K, Awatsuji Y 2019 Opt. Lett. 44 2069Google Scholar
[20] Davidson Z E, Gonzalez-Izquierdo B, Higginson A, Lancaster K L, Williamson S D R, King M, Farley D, Neely D, McKenna P, Gray R J 2019 Opt. Express 27 4416Google Scholar
[21] Kato K 1986 IEEE J. Quantum Electron. 22 1013Google Scholar
[22] Nagy T, Simon P 2009 Opt. Express 17 8144Google Scholar
[23] Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar
[24] Gabolde P, Trebino R 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 A25Google Scholar
[25] Yu W, Sheng Z M, Feng X P, Xu Z H, Zhu J H, Wang G G 1993 J. Phys. D: Appl. Phys. 26 1141Google Scholar
[26] Kim D W, Xiao G Y, Ma G B 1997 Appl. Opt. 36 6788Google Scholar
[27] Vogel A, Noack J, Hüttman G, Paltauf G 2005 Appl. Phys. B 81 1015Google Scholar
[28] Monchoce S, Kahaly S, Leblanc A, Videau L, Combis P, Reau F, Garzella D, D’Oliveira P, Martin P, Quere F 2014 Phys. Rev. Lett. 112 145008Google Scholar
[29] Batani K, Aliverdiev A, Benocci R, Dezulian R, Amirova A, Krousky E, Pfeifer M, Skala J, Dudzak R, Nazarov W, Batani D 2021 High Power Laser Sci. Eng. 9 e47Google Scholar
计量
- 文章访问数: 2407
- PDF下载量: 78
- 被引次数: 0