搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAs/GaAs量子点1.3 μm单光子发射特性

张志伟 赵翠兰 孙宝权

引用本文:
Citation:

InAs/GaAs量子点1.3 μm单光子发射特性

张志伟, 赵翠兰, 孙宝权

1.3 μm single photon emission from InAs/GaAs quantum dots

Zhang Zhi-Wei, Zhao Cui-Lan, Sun Bao-Quan
PDF
导出引用
  • 采用双层耦合量子点的分子束外延生长技术生长了InAs/GaAs量子点样品,把量子点的发光波长成功地拓展到1.3 μm.采用光刻的工艺制备了直径为3 μm的柱状微腔,提高了量子点荧光的提取效率.在低温5 K下,测量得到量子点激子的荧光寿命约为1 ns;单量子点荧光二阶关联函数为0.015,显示单量子点荧光具有非常好的单光子特性;利用迈克耳孙干涉装置测量得到单光子的相干时间为22 ps,对应的谱线半高全宽度为30 μeV,且荧光谱线的线型为非均匀展宽的高斯线型.
    Single-photon emitters are crucial for the applications in quantum communication, random number generation and quantum information processing. Self-assembled InAs/GaAs quantum dots (QDs) have demonstrated to have singlephoton emission with high extraction efficiency, single-photon purity, and photon indistinguishability. Thus they are considered as the promising deterministic single-photon emitters. To extend the emission wavelength of InAs/GaAs QDs to telecom band, several methods have been developed, such as the strain engineered metamorphic quantum dots, the use of strain reducing layers and the strain-coupled bilayer of QDs. In fact, it is reported on single-photon emissions based on InAs/InP QDs with an emission wavelength of 1.55μm, but it is difficult to combine such QDs with a high-quality distributed Bragg reflector (DBR) cavity because the refractive index difference between InP and InGaAsP is too small to obtain a DBR cavity with high quality factor. Here we investigate 1.3μm single-photon emissions based on selfassembled strain-coupled bilayer of InAs QDs embedded in micropillar cavities. The studied InAs/GaAs self-assembled QDs are grown by molecular beam epitaxy on a semi-insulating (100) GaAs substrate through strain-coupled bilayer of InAs QDs, where the active QDs are formed on the seed QDs capped with an InGaAs layer, and two-layer QDs are vertically coupled with each other. In such a structure the emission wavelength of QDs can be extended to 1.3μm. The QDs with a low density of about 6×108 cm-2 are embedded inside a planar 1-λ GaAs microcavity sandwiched between 20 and 8 pairs of Al0.9Ga0.1As/GaAs as the bottom and top mirror of a DBR planar cavity, respectively. Then the QD samples are etched into 3μm diameter micropillar by photolithography and dry etching. The measured quality factor of studied pillar cavity has a typical value of approximately 300. Photoluminescence (PL) spectra of QDs at a temperature of 5 K are examined by using a micro-photoluminescence setup equipped with a 300 mm monochromator and an InGaAs linear photodiode array detector. A diode laser with a continuous wave or a pulsed excitation repetition rate of 80 MHz and an excitation wavelength of 640 nm is used to excite QDs through an near-infrared objective (NA 0.5), and the PL emission is collected by the same objective. The time-resolved PL of the QDs is obtained by a time-correlated single photon counting. The second-order correlation function is checked by a Hanbury-Brown and Twiss setup through using ID 230 infrared single-photon detectors.
    In summary, we find that the 1.3μm QD exciton lifetime at 5 K is measured to be approximately 1 ns, which has the same value as the 920 nm QD exciton lifetime. The second-order correlation function is measured to be 0.015, showing a good characteristic of 1.3μm single photon emission. To measure the coherence time, i.e., to perform highresolution linewidth measurements, of the QDs emitted at the wavelength of 920 and 1300 nm, we insert a Michelson interferometer in front of the spectrometer. The obtained coherence time for 1.3μm QDs is 22 ps, corresponding to a linewidth of approximately 30μeV. Whereas, the coherence time is 216 ps for 920 nm QDs, corresponding to a linewidth of approximately 3μeV. Furthermore, both emission spectral lineshapes are different. The former is of Gaussian-like type, while the latter is of Lorentzian type.
    • 基金项目: 国家自然科学基金(批准号:11464034)和内蒙古自治区自然科学基金(批准号:2016MS0119)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464034) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2016MS0119).
    [1]

    Tang J, Xu X L 2018 Chin. Phys. B 27 27804

    [2]

    Zhang X, Li H O, Wang K, Cao G, Xiao M, Guo G P 2018 Chin. Phys. B 27 20305

    [3]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Chin. Phys. B 26 84202

    [4]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Appl. Phys. Lett. 111 182102

    [5]

    Yue P Y, Dou X M, Wang H Y, Ma B, Niu Z C, Sun B Q 2018 Opt. Commun. 411 114

    [6]

    Dou X M, Yu Y, Sun B Q, Ni H Q, Niu Z C 2012 Chin. Phys. Lett. 29 104203

    [7]

    Seravalli L, Minelli M, Frigeri P, Allegri P, Avanzini V, Franchi S 2003 Appl. Phys. Lett. 82 2341

    [8]

    Shimomura K, Kamiya I 2015 Appl. Phys. Lett. 106 082103

    [9]

    Takemoto K, Sakuma Y, Hirose S, Usuki T, Yokoyama N, Miyazawa T, Takatsu M, Arakawa Y 2004 Jpn. J. Appl. Phys. 43 L993

    [10]

    Liu X, Ha N, Nakajima H, Mano T, Kuroda T, Urbaszek B, Kumano H, Suemune I, Sakuma Y, Sakoda K 2014 Phys. Rev. B 90 081301

    [11]

    Olbrich F, Kettler J, Bayerbach M, Paul M, Höschele J, Portalupi S L, Jetter M, Michler P 2017 J. Appl. Phys. 121 184302

    [12]

    Seravalli L, Frigeri P, Minelli M, Allegri P, Avanzini V, Franchi S 2005 Appl. Phys. Lett. 87 063101

    [13]

    Ozaki N, Nakatani Y, Ohkouchi S, Ikeda N, Sugimoto Y, Asakawa K, Clarke E, Hogg R 2013 J. Cryst. Growth 378 553

    [14]

    Chen Z S, Ma B, Shang X J, He Y, Zhang L C, Ni H Q, Wang J L, Niu Z C 2016 Nanoscale Res. Lett. 11 382

    [15]

    Huang S S, Niu Z C, Ni H Q, Xiong Y H, Zhan F, Fang Z D, Xiao J B 2007 J. Cryst. Growth 301-302 751

    [16]

    Unsleber S, Schneider C, Maier S, He Y M, Gerhardt S, Lu C Y, Pan J W, Kamp M, Höfling S 2015 Opt. Express 23 32977

    [17]

    Zhou P, Wu X F, Ding K, Dou X M, Zha G W, Ni H Q, Niu Z C, Zhu H J, Jiang D S, Zhao C L 2015 J. Appl. Phys. 117 014304

    [18]

    Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129

    [19]

    Kammerer C, Cassabois G, Voisin C, Perrin M, Delalande C, Roussignol P, Gérard J 2002 Appl. Phys. Lett. 81 2737

  • [1]

    Tang J, Xu X L 2018 Chin. Phys. B 27 27804

    [2]

    Zhang X, Li H O, Wang K, Cao G, Xiao M, Guo G P 2018 Chin. Phys. B 27 20305

    [3]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Chin. Phys. B 26 84202

    [4]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Appl. Phys. Lett. 111 182102

    [5]

    Yue P Y, Dou X M, Wang H Y, Ma B, Niu Z C, Sun B Q 2018 Opt. Commun. 411 114

    [6]

    Dou X M, Yu Y, Sun B Q, Ni H Q, Niu Z C 2012 Chin. Phys. Lett. 29 104203

    [7]

    Seravalli L, Minelli M, Frigeri P, Allegri P, Avanzini V, Franchi S 2003 Appl. Phys. Lett. 82 2341

    [8]

    Shimomura K, Kamiya I 2015 Appl. Phys. Lett. 106 082103

    [9]

    Takemoto K, Sakuma Y, Hirose S, Usuki T, Yokoyama N, Miyazawa T, Takatsu M, Arakawa Y 2004 Jpn. J. Appl. Phys. 43 L993

    [10]

    Liu X, Ha N, Nakajima H, Mano T, Kuroda T, Urbaszek B, Kumano H, Suemune I, Sakuma Y, Sakoda K 2014 Phys. Rev. B 90 081301

    [11]

    Olbrich F, Kettler J, Bayerbach M, Paul M, Höschele J, Portalupi S L, Jetter M, Michler P 2017 J. Appl. Phys. 121 184302

    [12]

    Seravalli L, Frigeri P, Minelli M, Allegri P, Avanzini V, Franchi S 2005 Appl. Phys. Lett. 87 063101

    [13]

    Ozaki N, Nakatani Y, Ohkouchi S, Ikeda N, Sugimoto Y, Asakawa K, Clarke E, Hogg R 2013 J. Cryst. Growth 378 553

    [14]

    Chen Z S, Ma B, Shang X J, He Y, Zhang L C, Ni H Q, Wang J L, Niu Z C 2016 Nanoscale Res. Lett. 11 382

    [15]

    Huang S S, Niu Z C, Ni H Q, Xiong Y H, Zhan F, Fang Z D, Xiao J B 2007 J. Cryst. Growth 301-302 751

    [16]

    Unsleber S, Schneider C, Maier S, He Y M, Gerhardt S, Lu C Y, Pan J W, Kamp M, Höfling S 2015 Opt. Express 23 32977

    [17]

    Zhou P, Wu X F, Ding K, Dou X M, Zha G W, Ni H Q, Niu Z C, Zhu H J, Jiang D S, Zhao C L 2015 J. Appl. Phys. 117 014304

    [18]

    Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129

    [19]

    Kammerer C, Cassabois G, Voisin C, Perrin M, Delalande C, Roussignol P, Gérard J 2002 Appl. Phys. Lett. 81 2737

  • [1] 黄君辉, 李元和, 王健, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 静水压力调谐Ag纳米颗粒散射场下量子点激子寿命.  , 2022, 71(24): 247302. doi: 10.7498/aps.71.20221344
    [2] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合.  , 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [3] 孙志海, 黄强, 张颖, 黄鹏儒, 植慧茵, 邹勇进, 徐芬, 孙立贤. 六方氮化硼单层中一种(CN)3VB缺陷的第一性原理计算.  , 2021, 70(3): 033102. doi: 10.7498/aps.70.20201364
    [4] 王海玲, 王霆, 张建军. GaAs (001)图形衬底上InAs量子点的定位生长.  , 2019, 68(11): 117301. doi: 10.7498/aps.68.20190317
    [5] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射.  , 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [6] 张伟, 石震武, 霍大云, 郭小祥, 彭长四. 脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响.  , 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [7] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率.  , 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [8] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究.  , 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [9] 古丽姗, 王东升, 彭勇刚, 郑雨军. 单量子点在双脉冲激发下偏振光子发射的统计特性.  , 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [10] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. 基于InAs单量子点的单光子干涉.  , 2011, 60(3): 037809. doi: 10.7498/aps.60.037809
    [11] 彭勇刚, 张西忠, 张兆玉, 郑雨军. 单量子点在连续外场激发下发射光子性质的理论研究.  , 2010, 59(3): 1791-1796. doi: 10.7498/aps.59.1791
    [12] 常秀英, 窦秀明, 孙宝权, 熊永华, 倪海桥, 牛智川. 电场调谐InAs单量子点的发光光谱.  , 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [13] 刘玉敏, 俞重远, 任晓敏. 隔离层厚度和盖层厚度对InAs/GaAs量子点应变分布和发射波长的影响.  , 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [14] 劳燕锋, 曹春芳, 吴惠桢, 曹萌, 龚谦. 亚毫安阈值的1.3μm垂直腔面发射激光器.  , 2009, 58(3): 1954-1958. doi: 10.7498/aps.58.1954
    [15] 季海铭, 曹玉莲, 杨涛, 马文全, 曹青, 陈良惠. p型掺杂1.3μm InAs/GaAs量子点激光器的最大模式增益特性的研究.  , 2009, 58(3): 1896-1900. doi: 10.7498/aps.58.1896
    [16] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计.  , 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [17] 胡良均, 陈涌海, 叶小玲, 王占国. Mn离子注入InAs/GaAs量子点结构材料的光电性质研究.  , 2007, 56(8): 4930-4935. doi: 10.7498/aps.56.4930
    [18] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率.  , 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [19] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析.  , 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [20] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性.  , 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
计量
  • 文章访问数:  6586
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-24
  • 修回日期:  2018-09-26
  • 刊出日期:  2018-12-05

/

返回文章
返回
Baidu
map