搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地表反照率对短波红外探测大气CO2的影响

陈洁 张淳民 王鼎益 张兴赢 王舒鹏 栗彦芬 刘冬冬 荣飘

引用本文:
Citation:

地表反照率对短波红外探测大气CO2的影响

陈洁, 张淳民, 王鼎益, 张兴赢, 王舒鹏, 栗彦芬, 刘冬冬, 荣飘

Effects of the surface albedo on short-wave infrared detection of atmospheric CO2

Chen Jie, Zhang Chun-Min, Wang Ding-Yi, Zhang Xing-Ying, Wang Shu-Peng, Li Yan-Fen, Liu Dong-Dong, Rong Piao
PDF
导出引用
  • 在卫星短波红外遥感二氧化碳的过程中, 表征地表特征的地表反照率是影响探测精度的重要参数之一. 针对温室气体二氧化碳高精度探测的需求, 本文研究了地表反照率对正演模拟光谱和反演近地面二氧化碳平均柱浓度XCO2的影响. 模拟计算结果显示, 地表反照率数值增大时, 观察的光谱强度也相应增大, 并且在O2-A波段造成的光谱差异比1.6 μm波段高出一个数量级, 即地表反照率在O2-A波段的影响比较大. 选取了两个不同地表类型的实际观测光谱, 仅改变O2-A波段和1.6 μm波段地表反照率数值, 得出草地点在O2-A波段地表反照率达到0.25的误差时, 会给XCO2的反演结果造成大于1%的相对误差, 而1.6 μm波段的地表反照率变化对XCO2的反演结果造成的误差可以忽略不计, 说明了地表反照率在反演XCO2过程中的重要性主要来自对O2-A波段的影响. 此研究表明了地表反照率在卫星遥感温室气体过程中的重要性, 为提高遥感探测二氧化碳的精度提供了重要的理论依据和指导.
    The greenhouse gas carbon dioxide, for which short-wave infrared remote sensing detection is carried out by using satellite sensors to measure the Earth's atmosphere scattering solar radiation, and makes use of the inversion algorithm to achieve measurements. Most of the solar radiation enter the satellite sensors after surface reflection, so the surface albedo which reflects the surface features is one of the important parameters which affect the accuracy of the detection. Aiming at the great demands of high precision carbon dioxide for greenhouse gas, this study first investigate the effects of the Earth's surface albedo on the observed spectra. Simulation results show that the increase in the surface albedo will enhance the observed spectral intensity, especially larger in the O2-A band than in the 1.6 μm band. In other words, the surface albedo has a greater impact on O2-A ban. In the actual satellite inversio, the surface types of actual observation pointare uncertain, which will result in the error of surface albedo. Effect of surface albedo on the inverted XCO2 is analyzed when the surface albedo is changed by changing the type of surfac. Two observation cases are analyzed in detail. One is on April 23, 2009 for the desert surface, and another on May 21, 2013 for the grass surfac. Results show that when the O2-A band surface albedo approximates to the real surface albedo valu, the relative error of the inverted XCO2 is the smaller. If the relative changes of the O2-A band surface albedo exceed 0.25 in the grass surfac or 0.35 in the desert surface, the relative error of the inverted XCO2 will be greater than 1%, not satisfying the design requirement of the inversion system. In contrast, the changesin 1.6 μm band surface albedo have negligible effect on the inverted XCO2. This study shows the importance of surface albedo in the process of satellite remote sensin, and provides an important theoretical basis and guidance for improving the accuracy of remote sensing detectio. All these are significantly contributed to the hyperspectral satellite observation of the greenhouse gas, the investigation of global CO2 distributions, and the prediction and monitoring of the climate change.
      通信作者: 张淳民, zcm@mail.xjtu.edu.cn
    • 基金项目: 国家重大专项(批准号: 32-Y30B08-9001-13/15, E310/1112)、国家高技术研究发展计划(863计划)(批准号: 2011AA12 A104, 2012AA121101)、国家自然科学基金(批准号: 61275184, 41530422) 资助的课题.
      Corresponding author: Zhang Chun-Min, zcm@mail.xjtu.edu.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant Nos. 32-Y30B08-9001-13/15, E310/1112), the National High Technology Research and Development Program of China (Grant Nos. 2011AA12 A104, 2012AA121101), the National Natural Science Foundation of China (Grant Nos. 61275184, 41530422).
    [1]

    Ballantyne A P, Alden C B, Miller J B 2012 Nature 488 70

    [2]

    Liu Y, Lv D R, Chen H B 2011 Remote Sens. Technol. Appl. 26 247 (in Chinese) [刘毅, 吕达仁, 陈洪滨 2011 遥感技术与应用 26 247]

    [3]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [4]

    He J, Zhang C M 2005 J. Opt. A-Pure Appl. Op. 7 613

    [5]

    Bousquet P, Peylin P, Ciais P 2000 Science 290 1342

    [6]

    Harries J E, Russell J E, Hanafin J A 2005 B Am. Meteorol. Soc. 86 945

    [7]

    Ye H H, Wang X H, Wu J, Fang Y H, Xiong W, Cui F X 2011 J Atmos. Environ. Opt. 06 208 (in Chinese) [叶函函, 王先华, 吴军, 方勇华, 熊伟, 崔方晓 2011 大气与环境光学学报 06 208]

    [8]

    Wunch D, Wennberg P O, Toon G C 2011 Atmos. Chem. Phys. 11 12317

    [9]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [10]

    Liang S L 2014 Global land table feature parameters (GLASS) product algorithm, verification and analysis(Beijing:Higher Education Press) p84 (in Chinese) [梁顺林 2014 全球陆表特征参量(GLASS)产品算法, 验证与分析(北京:高等教育出版社) 第84页]

    [11]

    Schaaf C B, Gao F, Strahler A H 2002 Remote Sens. Environ. 83 135

    [12]

    Baker D F, Doney S C, Schimel D S 2006 Tellus. B 58 359

    [13]

    Feng L, Palmer P I, Bösch H 2009 Atmos. Chemphys. 9 2619

    [14]

    Chevallier F, Bréon F M, Rayner P J 2007 J. Geophys. Res. 112 139

    [15]

    Houweling S, Hartmann W, Aben I 2005 Atmos. Chemphys. 5 3003

    [16]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [17]

    Zhang Y F, Wang X P, Pan Y X 2011 J. Desert Res. 05 1141 (in Chinese) [张亚峰, 王新平, 潘颜霞 2011 中国沙漠 05 1141]

    [18]

    Sun Z A, WENG D M 1994 J. Appl. Meteor. Sci. 04 394 (in Chinese) [孙治安, 翁笃鸣 1994 应用气象学报 04 394]

    [19]

    Feng C, Gu S, Zhao L 2010 Plateau Meteor. 01 70 (in Chinese) [冯超, 古松, 赵亮 2010 高原气象 01 70]

    [20]

    Hu L Q, Li J F 1993 Arid Zone Res. 01 33 (in Chinese) [胡列群, 李江风 1993 干旱区研究 01 33]

    [21]

    Yao T, Zhang Q 2014 Acta Phys. Sin. 63 084601 (in Chinese) [姚彤, 张强 2014 63 084601]

    [22]

    Hild L, Richter A, Rozanov V 2002 Adv. Space Res. 29 1685

    [23]

    Shi G Y 2007 Atmospheric Radiation Science (Beijing:Science Press) p203 (in Chinese) [石广玉. 大气辐射学(北京:科学出版社) 第203页]

  • [1]

    Ballantyne A P, Alden C B, Miller J B 2012 Nature 488 70

    [2]

    Liu Y, Lv D R, Chen H B 2011 Remote Sens. Technol. Appl. 26 247 (in Chinese) [刘毅, 吕达仁, 陈洪滨 2011 遥感技术与应用 26 247]

    [3]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [4]

    He J, Zhang C M 2005 J. Opt. A-Pure Appl. Op. 7 613

    [5]

    Bousquet P, Peylin P, Ciais P 2000 Science 290 1342

    [6]

    Harries J E, Russell J E, Hanafin J A 2005 B Am. Meteorol. Soc. 86 945

    [7]

    Ye H H, Wang X H, Wu J, Fang Y H, Xiong W, Cui F X 2011 J Atmos. Environ. Opt. 06 208 (in Chinese) [叶函函, 王先华, 吴军, 方勇华, 熊伟, 崔方晓 2011 大气与环境光学学报 06 208]

    [8]

    Wunch D, Wennberg P O, Toon G C 2011 Atmos. Chem. Phys. 11 12317

    [9]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [10]

    Liang S L 2014 Global land table feature parameters (GLASS) product algorithm, verification and analysis(Beijing:Higher Education Press) p84 (in Chinese) [梁顺林 2014 全球陆表特征参量(GLASS)产品算法, 验证与分析(北京:高等教育出版社) 第84页]

    [11]

    Schaaf C B, Gao F, Strahler A H 2002 Remote Sens. Environ. 83 135

    [12]

    Baker D F, Doney S C, Schimel D S 2006 Tellus. B 58 359

    [13]

    Feng L, Palmer P I, Bösch H 2009 Atmos. Chemphys. 9 2619

    [14]

    Chevallier F, Bréon F M, Rayner P J 2007 J. Geophys. Res. 112 139

    [15]

    Houweling S, Hartmann W, Aben I 2005 Atmos. Chemphys. 5 3003

    [16]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [17]

    Zhang Y F, Wang X P, Pan Y X 2011 J. Desert Res. 05 1141 (in Chinese) [张亚峰, 王新平, 潘颜霞 2011 中国沙漠 05 1141]

    [18]

    Sun Z A, WENG D M 1994 J. Appl. Meteor. Sci. 04 394 (in Chinese) [孙治安, 翁笃鸣 1994 应用气象学报 04 394]

    [19]

    Feng C, Gu S, Zhao L 2010 Plateau Meteor. 01 70 (in Chinese) [冯超, 古松, 赵亮 2010 高原气象 01 70]

    [20]

    Hu L Q, Li J F 1993 Arid Zone Res. 01 33 (in Chinese) [胡列群, 李江风 1993 干旱区研究 01 33]

    [21]

    Yao T, Zhang Q 2014 Acta Phys. Sin. 63 084601 (in Chinese) [姚彤, 张强 2014 63 084601]

    [22]

    Hild L, Richter A, Rozanov V 2002 Adv. Space Res. 29 1685

    [23]

    Shi G Y 2007 Atmospheric Radiation Science (Beijing:Science Press) p203 (in Chinese) [石广玉. 大气辐射学(北京:科学出版社) 第203页]

  • [1] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟研究.  , 2024, 73(23): . doi: 10.7498/aps.73.20241241
    [2] 邓娈, 杜报, 蔡洪波, 康洞国, 朱少平. 在质子照相中利用Abel逆变换反演等离子体自生磁场结构.  , 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [3] 屈科, 朴胜春, 朱凤芹. 一种基于内潮动力特征的浅海声速剖面构建新方法.  , 2019, 68(12): 124302. doi: 10.7498/aps.68.20181867
    [4] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演.  , 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [5] 徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮. 基于颗粒粒度信息分布特征的动态光散射加权反演.  , 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [6] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演.  , 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [7] 李伦, 吴雄斌. 高频地波雷达多站浅海水深与海流反演.  , 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [8] 李伦, 吴雄斌, 徐兴安. 基于优化理论的高频地波雷达海浪参数反演.  , 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [9] 姚彤, 张强. 我国北方不同类型下垫面地表反照率特征.  , 2014, 63(8): 089201. doi: 10.7498/aps.63.089201
    [10] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度.  , 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [11] 梁捷宁, 张镭, 张武, 史晋森. 黄土高原半干旱区地表能量不闭合及其对二氧化碳通量的影响.  , 2013, 62(9): 099203. doi: 10.7498/aps.62.099203
    [12] 韩月琪, 钟中, 王云峰, 杜华栋. 梯度计算的集合变分方案及其在大气Ekman层湍流系数反演中的应用.  , 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [13] 李海燕, 胡云安, 任建存, 朱敏, 刘亮. 非匹配不确定交叉严反馈超混沌系统神经网络反演同步.  , 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [14] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导.  , 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [15] 丁世敬, 葛德彪, 申宁. 复合介质等效电磁参数的数值研究.  , 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [16] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法.  , 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [17] 孙贤明, 哈恒旭. 基于反射太阳光反演气溶胶光学厚度和有效半径.  , 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [18] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演.  , 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演.  , 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [20] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆.  , 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
计量
  • 文章访问数:  6090
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-12
  • 修回日期:  2015-07-28
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map