-
In a high-precision optical fiber time transfer system, in order to solve the scientific problem of time transfer dispersion deviation caused by the inconsistency of the two-way laser wavelengths, a high-precision time transfer method based on laser wavelength tracking is proposed in this paper. In the two-way time comparison, the laser emitted by the local site is used as a reference, and other lasers in the system track the reference, and the difference between the two-way laser wavelengths is small enough and stable for a long time, thereby greatly reducing the time transfer deviation caused by the inconsistency of the two-way laser wavelengths. In order to verify the performance of laser wavelength tracking, a double-layer temperature controlled externally modulated laser is designed, an experimental device for automatic laser wavelength tracking is designed, and laser wavelength tracking experimental modules are developed. The results show that the standard deviation of wavelength jitter is 55 fm, and the long-term relative stability of laser wavelength tracking is better than 5 fm@1×104 s, which ensures that the two laser wavelengths can remain relatively stable for a long time. In the case of long-distance fiber time transfer, by optimizing the setting value of the wavelength difference between each laser and the reference light on the link, the dispersion deviation of time transfer can be further reduced. In order to verify the feasibility of the high-precision optical fiber time transfer method based on laser wavelength tracking, a long-distance multi-station optical fiber time transfer experimental setup is built in our laboratory. The experiment is carried out in the laboratory by using 0.005, 250, 500, 750 km optical fiber links. The experimental results obtained on 750 km link show that the time transfer deviation is better than 5 ps, the stability is 4.7 ps@1 s, 0.4 ps@4×104 s, and the uncertainty is 8.4 ps. In the engineering application of optical fiber time transfer, by optimizing the working sequence of the system, the holding time length of the remote site clock can be reduced, and the accuracy of optical fiber time transfer can be further improved, which lays a foundation for realizing high-precision long-haul optical fiber time transfer.
-
Keywords:
- optical fiber link /
- time synchronization /
- synchronization network /
- laser wavelength tracking
[1] Bartels A, Diddams S A, Oates C W, Wilpers G, Hollberg L 2005 Optics Lett. 30 667Google Scholar
[2] Marion H, Santos F, Abgrall M, Zhang S, Sortais Y, Bize S 2003 Phys. Rev. Lett. 90 150801Google Scholar
[3] Decamp M F, Reis D A, Bucksbaum P H, Adams B, Caraher J M, Clarke R, Conover C W, Dufresne E M, Merlin R, Stoica V, Wahlstrand J K 2001 Nature 413 825Google Scholar
[4] Shillue B, AlBanna S, D'Addario L 2004 IEEE International Topical Meeting on Microwave Photonics Ogunquit, ME, USA, October 4–6, 2004 p201
[5] Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, Marchi A D, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321Google Scholar
[6] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Demiranda M H G, Martin M J, Thomsen J W 2008 Science 319 1805Google Scholar
[7] Chou C W, Hume D B, Koelemeij J, Wineland D J, Rosenband T 2009 Phys. Rev. Lett. 104 070802Google Scholar
[8] Rost M, Piester D, Yang W, Feldmann T, Wübbena T, Bauch A 2012 Metrologia 49 772Google Scholar
[9] Lopez O, Chardonnet C, Amy-Klein A, Kanj A, Pottie P E, Rovera D 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium Prague, Czech Republic, July 21–25, 2013 p474
[10] Śliwczyński Ł, Krehlik P, Czubla A, Buczek Ł, Lipinski M 2013 Metrologia 50 133Google Scholar
[11] Śliwczyński Ł, Krehlik P, Czubla A, Buczek Ł, Lipinski M 2020 J. Lightwave Technol. 38 5056Google Scholar
[12] Frank F, Stefani F, Tuckey P, Pottie P 2018 IEEE Trans. Ultrason. Ferr. 65 1001Google Scholar
[13] 陈法喜, 赵侃, 周旭, 刘涛, 张首刚 2017 20 200701Google Scholar
Chen F X, Zhao K, Zhou X, Liu T, Zhang S G 2017 Acta Phys. Sin. 20 200701Google Scholar
[14] Cheng H, Wu G L, Zuo F, Hu L, Chen J 2019 Opt. Lett. 21 5206Google Scholar
[15] 吴龟灵, 陈建平 2016 科技导报 34 99Google Scholar
Wu G L, Chen J P 2016 Science and Technology Herald 34 99Google Scholar
[16] Gao C, Wang B, Zhu X, Chen W L, Bai Y, Miao J, Zhu X, Li T C, Wang L J 2012 Opt. Lett. 37 4690Google Scholar
[17] 刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚 2015 64 120602Google Scholar
Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602Google Scholar
[18] Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601Google Scholar
[19] Zuo F, Chen Z, Hu L, Chen J, Wu G L 2020 IEEE Access 8 114656Google Scholar
[20] Zuo F, Chen Z, Hu L, Chen J, Wu G L 2021 J. Lightwave Technol. 39 2015Google Scholar
[21] Liu Q, Han S L, Wang J L, Feng Z T, Chen W 2016 Chin. Opt. Lett. 14 070602Google Scholar
[22] 陈法喜, 赵侃, 李博, 刘博, 郭新兴, 孔维成, 陈国超, 郭宝龙, 刘涛, 张首刚 2021 70 070702Google Scholar
Chen F X, Zhao K, Li B, Liu B, Guo X X, Kong W C, Chen G C, Guo B L, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 070702Google Scholar
[23] Zhang H, Wu G L, Hu L, Li X, Chen J 2015 IEEE Photon. J. 7 7600208Google Scholar
-
表 1 不同长度光纤链路开启激光波长跟踪前后时延值 (单位: ps)
Table 1. Time delay before and after laser wavelength tracking for different length fiber links (in ps).
节点间光纤长度/km 跟踪前后 0.001 50 100 150 前 后 前 后 前 后 前 后 远程端1号 2 1 36 3 79 2 115 4 远程端2号 –3 –2 76 –1 148 –3 217 –2 远程端3号 5 3 123 4 229 6 340 3 远程端4号 –4 –2 141 1 301 –3 451 –2 远程端5号 3 4 190 2 377 5 569 4 表 2 750 km实验室光纤时间传递不确定度
Table 2. Uncertainty of 750 km optical fiber time transfer in laboratory.
误差源 误差估计值 设备系统时延温漂$ {u}_{\rm{D}\rm{T}} $/ps 4.0 时间间隔测量误差$ {u}_{\rm{T}\rm{I}\rm{M}} $/ps 7.3 光纤色散系数温度漂移$ {u}_{\Delta D} $/ps 3.0 × 10–4 合成不确定度$ {U}_{\rm{c}} $/ps 8.4 激光器波长误差$ {u}_{\Delta \lambda } $/ps 0.8 (短期) 0.6 (长期) -
[1] Bartels A, Diddams S A, Oates C W, Wilpers G, Hollberg L 2005 Optics Lett. 30 667Google Scholar
[2] Marion H, Santos F, Abgrall M, Zhang S, Sortais Y, Bize S 2003 Phys. Rev. Lett. 90 150801Google Scholar
[3] Decamp M F, Reis D A, Bucksbaum P H, Adams B, Caraher J M, Clarke R, Conover C W, Dufresne E M, Merlin R, Stoica V, Wahlstrand J K 2001 Nature 413 825Google Scholar
[4] Shillue B, AlBanna S, D'Addario L 2004 IEEE International Topical Meeting on Microwave Photonics Ogunquit, ME, USA, October 4–6, 2004 p201
[5] Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, Marchi A D, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321Google Scholar
[6] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Demiranda M H G, Martin M J, Thomsen J W 2008 Science 319 1805Google Scholar
[7] Chou C W, Hume D B, Koelemeij J, Wineland D J, Rosenband T 2009 Phys. Rev. Lett. 104 070802Google Scholar
[8] Rost M, Piester D, Yang W, Feldmann T, Wübbena T, Bauch A 2012 Metrologia 49 772Google Scholar
[9] Lopez O, Chardonnet C, Amy-Klein A, Kanj A, Pottie P E, Rovera D 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium Prague, Czech Republic, July 21–25, 2013 p474
[10] Śliwczyński Ł, Krehlik P, Czubla A, Buczek Ł, Lipinski M 2013 Metrologia 50 133Google Scholar
[11] Śliwczyński Ł, Krehlik P, Czubla A, Buczek Ł, Lipinski M 2020 J. Lightwave Technol. 38 5056Google Scholar
[12] Frank F, Stefani F, Tuckey P, Pottie P 2018 IEEE Trans. Ultrason. Ferr. 65 1001Google Scholar
[13] 陈法喜, 赵侃, 周旭, 刘涛, 张首刚 2017 20 200701Google Scholar
Chen F X, Zhao K, Zhou X, Liu T, Zhang S G 2017 Acta Phys. Sin. 20 200701Google Scholar
[14] Cheng H, Wu G L, Zuo F, Hu L, Chen J 2019 Opt. Lett. 21 5206Google Scholar
[15] 吴龟灵, 陈建平 2016 科技导报 34 99Google Scholar
Wu G L, Chen J P 2016 Science and Technology Herald 34 99Google Scholar
[16] Gao C, Wang B, Zhu X, Chen W L, Bai Y, Miao J, Zhu X, Li T C, Wang L J 2012 Opt. Lett. 37 4690Google Scholar
[17] 刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚 2015 64 120602Google Scholar
Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602Google Scholar
[18] Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601Google Scholar
[19] Zuo F, Chen Z, Hu L, Chen J, Wu G L 2020 IEEE Access 8 114656Google Scholar
[20] Zuo F, Chen Z, Hu L, Chen J, Wu G L 2021 J. Lightwave Technol. 39 2015Google Scholar
[21] Liu Q, Han S L, Wang J L, Feng Z T, Chen W 2016 Chin. Opt. Lett. 14 070602Google Scholar
[22] 陈法喜, 赵侃, 李博, 刘博, 郭新兴, 孔维成, 陈国超, 郭宝龙, 刘涛, 张首刚 2021 70 070702Google Scholar
Chen F X, Zhao K, Li B, Liu B, Guo X X, Kong W C, Chen G C, Guo B L, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 070702Google Scholar
[23] Zhang H, Wu G L, Hu L, Li X, Chen J 2015 IEEE Photon. J. 7 7600208Google Scholar
Catalog
Metrics
- Abstract views: 3153
- PDF Downloads: 65
- Cited By: 0