搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外磁场与带轴夹角对非晶FeSiB/Cu/FeSiB三明治薄带巨磁阻抗特性的影响

邵先亦 徐爱娇 王天乐

引用本文:
Citation:

外磁场与带轴夹角对非晶FeSiB/Cu/FeSiB三明治薄带巨磁阻抗特性的影响

邵先亦, 徐爱娇, 王天乐

Effects of the angle between magnetic field and ribbon axis on the magneto-impedance properties of amorphous FeSiB/Cu/FeSiB sandwiched ribbon

Shao Xian-Yi, Xu Ai-Jiao, Wang Tian-Le
PDF
HTML
导出引用
  • 采用层间胶合方法制备了淬态非晶FeSiB/Cu/FeSiB三明治薄带, 研究了同尺寸单层薄带和三明治薄带的巨磁阻抗(giant magneto-impedance, GMI)随外磁场与带轴夹角$\beta$的变化特性. 结果表明, FeSiB单层薄带在7.0 MHz最佳响应频率下, GMI仅约30%, 外磁场与带轴夹角对单层薄带GMI几乎没有影响; 三明治薄带的GMI效应则十分显著, 在0.6 MHz最佳响应频率下, 纵、横向GMI比分别达到272%和464%, GMI随$\beta$的增大而增强; 所有$\beta$角的三明治薄带GMI曲线都出现各向异性峰, 各向异性峰随$\beta$的增大而展宽. 根据磁畴转动模型推导了薄带横向磁导率与各向异性场及$\beta$之间的函数关系式. 结果显示, 三明治薄带GMI随夹角$\beta$变化的特性与理论推算的横向磁导率变化有较好的一致性, 而单层薄带则不然. 该磁畴转动模型能定性解释三明治薄带GMI随外磁场方向变化特性.
    Amorphous FeSiB ribbons with nominal composition of Fe78Si9B13 are prepared by single roll rapid quenching technique. In order to enhance the giant magneto-impedance (GMI) effect of FeSiB ribbons, interlaminar gluing method is used to produce FeSiB/Cu/FeSiB sandwiched structure in which the FeSiB ribbons act as external soft magnetic layers and the Cu foil acts as internal conductive layer. The variation characteristics of GMI with angle $\beta$ between the external magnetic field and the ribbon axis for the single layer FeSiB ribbon and the sandwiched ribbon are studied by a rotating device placed in magnetic field which can drive the sample to rotate, to obtain a variable angle $\beta$ from 0° to 90° with 15° degree angle interval. Magnetic domain structure detection shows that the amorphous FeSiB ribbons have near-axial magnetic anisotropy, and the angle between easy axis and ribbon axis is about 15°. In this work, in the case without considering the effects of shape anisotropy, the functional relationship among magnetic field at anisotropic peak of permeability, transverse permeability ratio and angle $\beta$ is obtained according to the expression of the transverse permeability of ribbon derived from a domain rotation model. The results display that anisotropic peak appears in the transverse permeability for each of all testing values of angle $\beta$. Moreover, the transverse permeability ratio increases with $\beta$ increasing. The magneto-impedance testing results indicate that the maximum GMI ratio of single layer ribbon is only about 30% at an optimum response frequency of 7.0 MHz, and angle $\beta$ has almost no influence on the GMI. In contrast, the GMI of sandwiched ribbon presents a significant enhancement, the maximum value of the longitudinal GMI ratio and that of transverse GMI ratio reach 272% and 464%, respectively at an optimum response frequency of 0.6 MHz, the GMI of sandwiched ribbon is sensitive to the variation of angle $\beta$, and with increase of $\beta$ the GMI increases accordingly. In addition, for all testing values of angle $\beta$, the GMI profiles of sandwiched ribbon show anisotropic peaks, due to the influence of transverse demagnetization field, and the anisotropic peak broadens with the increase of angle $\beta$. By comparing the theoretical and experimental results, it can be concluded that for the sandwiched ribbon, the characteristics of GMI changing with angle $\beta$ agree better with the theoretical transverse permeability, which but is not for single layer ribbon. Besides, whether the anisotropic peak of GMI appears is independent of the orientation of the external magnetic field. As the transverse permeability ratio increases with the increase of angle $\beta$, the GMI effect of sandwiched ribbon is enhanced accordingly. The study results also demonstrate that the domain rotation model can be used to explicate the variation of GMI properties of sandwiched ribbon with the angle between magnetic field and ribbon axis qualitatively when the domain rotation magnetization is dominant.
      通信作者: 邵先亦, sxy8718@163.com
    • 基金项目: 浙江省公益技术应用研究计划(批准号: 2017C37096)资助的课题.
      Corresponding author: Shao Xian-Yi, sxy8718@163.com
    • Funds: Project supported by the Public Technology Application Research Plan of Zhejiang Province, China (Grant No. 2017C37096).
    [1]

    张树玲, 陈炜晔, 张勇 2015 64 167501Google Scholar

    Zhang S L, Chen W Y, Zhang Y 2015 Acta Phys. Sin. 64 167501Google Scholar

    [2]

    王文静, 袁慧敏, 李娟, 姬长建, 代由勇, 萧淑琴 2013 中国科学: 物理学 力学 天文学 43 852Google Scholar

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852Google Scholar

    [3]

    Phan M H, Peng H X 2008 Prog. Mater. Sci. 53 323Google Scholar

    [4]

    He J, Guo H Q, Shen B G, He K Y, Zhang H W 2001 Mater. Sci. Eng. A 304–306 988Google Scholar

    [5]

    Phan M H, Peng H X, Wisnom M R, Yu S C, Kim C G, Nghi N H 2006 Sensor. Actuat. A: Phys. 129 62Google Scholar

    [6]

    Hika K, Panina L V, Mohri K 1996 IEEE Trans. Magn. 32 4594Google Scholar

    [7]

    Xiao S Q, Liu Y H, Yan S S, Dai Y Y, Zhang L, Mei L M 2000 Phys. Rev. B 61 5734Google Scholar

    [8]

    Le A T, Tung M T, Phan M H 2012 J. Supercond. Nov. Magn. 25 1133Google Scholar

    [9]

    周勇, 丁文, 陈吉安, 杨春生, 高孝裕, 王明军, 张亚民 2004 磁性材料及器件 35 8Google Scholar

    Zhou Y, Ding W, Chen J A, Yang C S, Gao X Y, Wang M J, Zhang Y M 2004 J. Magn. Mater. Dev. 35 8Google Scholar

    [10]

    Zhong Z Y, Zhang H W, Jing Y L, Tang X L, Liu S 2008 Sens. Actuators A: Phys. 141 29Google Scholar

    [11]

    Amalou F, Gijs M A M 2004 J. Appl. Phys. 95 1364Google Scholar

    [12]

    Alves F, Moutoussamy J, Coillot C, Abirached L, Kaviraj B 2008 Sens. Actuators A: Phys. 145–146 241Google Scholar

    [13]

    邵先亦, 陈卫平, 钟彬荃, 谢佳文 2018 稀有金属材料与工程 47 1160

    Shao X Y, Chen W P, Zhong B Q, Xie J W 2018 Rare Metal Mat. Eng. 47 1160

    [14]

    Zhao C B, Zhang X L, Liu Q F, Wang J B 2016 J. Phys. D 49 065006Google Scholar

    [15]

    Sommer R L, Chien C L 1996 Phys. Rev. B 53 R5982Google Scholar

    [16]

    Pirota K R, Kraus L, Knobel M, Pagliuso P G, Rettori C 1999 Phys. Rev. B 60 6685Google Scholar

    [17]

    Yu J Q, Yu A B, Zhou Y, Cai B C, Zhao X L 2000 Proceedings of the Fourth International Conference on Thin Film Physics and Applications Shanghai, China, May 8–11, 2000 p514

    [18]

    Mardani R, Amirabadizadeh A 2014 Mod. Phys. Lett. B 28 1450197Google Scholar

    [19]

    王艾玲, 刘江涛, 周云松, 姜宏伟, 郑鹉 2004 53 905Google Scholar

    Wang A L, Liu J T, Zhou Y S, Jiang H W, Zheng W 2004 Acta Phys. Sin. 53 905Google Scholar

    [20]

    Panina L V, Mohri K, Uchiyama T, Noda M 1995 IEEE Trans. Magn. 31 1249Google Scholar

    [21]

    Reichl L E 1998 A Modern Course in Statistical Physics (2nd Ed.) (New York: Wiley-VCH) p376

    [22]

    Atkinson D, Squire P T 1998 J. Appl. Phys. 83 6569Google Scholar

    [23]

    张建强, 叶慧群, 郑建龙, 李通银, 李文忠, 马云, 方允樟 2010 浙江师范大学学报(自然科学版) 33 150Google Scholar

    Zhang J Q, Ye H Q, Zheng J L, Li T Y, Li W Z, Ma Y, Fang Y Z 2010 J. Zheiiang Normal Univ. (Nat. Sci.) 33 150Google Scholar

    [24]

    Makhnovskiy D P, Panina L V, Mapps D J 2001 J. Appl. Phys. 89 7224Google Scholar

    [25]

    Betancourt I 2011 Materials 4 37

    [26]

    Kurlyandskaya G V, Barandiarán J M, Vázquez M, Garcı́A D, Dmitrieva N V 2000 J. Magn. Magn. Mater. 215–216 740Google Scholar

    [27]

    Franco C S, Ribas G P, Bruno A C 2006 Sens. Actuators A: Phys. 132 85Google Scholar

    [28]

    Sommer R L, Chien C L 1995 J. Appl. Phys. Lett. 67 3346Google Scholar

    [29]

    Zhao C B, Pan L N, Ma X Q, Li J N, Liu Q F, Wang J B 2017 J. Magn. Magn. Mater. 444 198Google Scholar

  • 图 1  (a) 磁阻抗测试装置示意图; (b) 三明治薄带结构示意图

    Fig. 1.  (a) Schematic view of magneto-impedance mesurement device; (b) structural sketch of sandwich ribbon

    图 2  薄带面内各向异性场、磁化强度、外磁场、交流驱动场关系示意图

    Fig. 2.  Sketch map of the relationship among in-plane anisotropy field, magnetization, external magnetic field, AC driven field in ribbon

    图 3  非晶FeSiB薄带的磁畴结构 (a) 3.5 mm × 3.5 mm薄带; (b) 28 mm × 3.5 mm薄带

    Fig. 3.  Magnetic domain of amorphous ribbons: (a) Ribbon size is 3.5 mm × 3.5 mm; (b) ribbon size is 28 mm × 3.5 mm

    图 4  非晶FeSiB薄带磁滞回线(L和T分别表示所加磁场平行和垂直于带轴方向)

    Fig. 4.  Hysteresis loop of amorphous FeSiB ribbon (“L” and “T” indicates the field direction parallel or perpendicular to the ribbon axis, respectively)

    图 5  单层薄带磁阻抗特性 (a) 不同$\beta$角的MI比随频率的变化特性; (b) $\beta$ = 0°时, 不同频率的MI比随外磁场的变化特性

    Fig. 5.  The MI characteristics of single layer ribbon: (a) MI ratios of different $\beta$ vary with frequency; (b) MI ratios of different frequencies change with field, at $\beta$ = 0°

    图 6  不同$\beta$角下三明治薄带磁阻抗特性 (a) MI比随频率的变化特性; (b) 0.6 MHz频率下MI比随外磁场的变化特性

    Fig. 6.  The MI characteristics of sandwiched ribbon at different angle $\beta$: (a) MI ratios vary with frequency; (b) field dependence of MI ratios at the frequency of 0.6 MHz

    图 7  h = Hext/Hk随夹角$\beta$的变化关系

    Fig. 7.  h = Hext/Hk varies with the angle $\beta$

    图 8  不同$\beta$角时最大MI比与理论磁导率比的比较 (a) 单层薄带样品; (b) 三明治薄带样品; (c) 理论磁导率比

    Fig. 8.  Comparison between maximum MI ratios and theoretical permeability ratios at different $\beta$: (a) Single layer ribbon; (b) sandwiched ribbon; (c) theoretical permeability ratios

    Baidu
  • [1]

    张树玲, 陈炜晔, 张勇 2015 64 167501Google Scholar

    Zhang S L, Chen W Y, Zhang Y 2015 Acta Phys. Sin. 64 167501Google Scholar

    [2]

    王文静, 袁慧敏, 李娟, 姬长建, 代由勇, 萧淑琴 2013 中国科学: 物理学 力学 天文学 43 852Google Scholar

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852Google Scholar

    [3]

    Phan M H, Peng H X 2008 Prog. Mater. Sci. 53 323Google Scholar

    [4]

    He J, Guo H Q, Shen B G, He K Y, Zhang H W 2001 Mater. Sci. Eng. A 304–306 988Google Scholar

    [5]

    Phan M H, Peng H X, Wisnom M R, Yu S C, Kim C G, Nghi N H 2006 Sensor. Actuat. A: Phys. 129 62Google Scholar

    [6]

    Hika K, Panina L V, Mohri K 1996 IEEE Trans. Magn. 32 4594Google Scholar

    [7]

    Xiao S Q, Liu Y H, Yan S S, Dai Y Y, Zhang L, Mei L M 2000 Phys. Rev. B 61 5734Google Scholar

    [8]

    Le A T, Tung M T, Phan M H 2012 J. Supercond. Nov. Magn. 25 1133Google Scholar

    [9]

    周勇, 丁文, 陈吉安, 杨春生, 高孝裕, 王明军, 张亚民 2004 磁性材料及器件 35 8Google Scholar

    Zhou Y, Ding W, Chen J A, Yang C S, Gao X Y, Wang M J, Zhang Y M 2004 J. Magn. Mater. Dev. 35 8Google Scholar

    [10]

    Zhong Z Y, Zhang H W, Jing Y L, Tang X L, Liu S 2008 Sens. Actuators A: Phys. 141 29Google Scholar

    [11]

    Amalou F, Gijs M A M 2004 J. Appl. Phys. 95 1364Google Scholar

    [12]

    Alves F, Moutoussamy J, Coillot C, Abirached L, Kaviraj B 2008 Sens. Actuators A: Phys. 145–146 241Google Scholar

    [13]

    邵先亦, 陈卫平, 钟彬荃, 谢佳文 2018 稀有金属材料与工程 47 1160

    Shao X Y, Chen W P, Zhong B Q, Xie J W 2018 Rare Metal Mat. Eng. 47 1160

    [14]

    Zhao C B, Zhang X L, Liu Q F, Wang J B 2016 J. Phys. D 49 065006Google Scholar

    [15]

    Sommer R L, Chien C L 1996 Phys. Rev. B 53 R5982Google Scholar

    [16]

    Pirota K R, Kraus L, Knobel M, Pagliuso P G, Rettori C 1999 Phys. Rev. B 60 6685Google Scholar

    [17]

    Yu J Q, Yu A B, Zhou Y, Cai B C, Zhao X L 2000 Proceedings of the Fourth International Conference on Thin Film Physics and Applications Shanghai, China, May 8–11, 2000 p514

    [18]

    Mardani R, Amirabadizadeh A 2014 Mod. Phys. Lett. B 28 1450197Google Scholar

    [19]

    王艾玲, 刘江涛, 周云松, 姜宏伟, 郑鹉 2004 53 905Google Scholar

    Wang A L, Liu J T, Zhou Y S, Jiang H W, Zheng W 2004 Acta Phys. Sin. 53 905Google Scholar

    [20]

    Panina L V, Mohri K, Uchiyama T, Noda M 1995 IEEE Trans. Magn. 31 1249Google Scholar

    [21]

    Reichl L E 1998 A Modern Course in Statistical Physics (2nd Ed.) (New York: Wiley-VCH) p376

    [22]

    Atkinson D, Squire P T 1998 J. Appl. Phys. 83 6569Google Scholar

    [23]

    张建强, 叶慧群, 郑建龙, 李通银, 李文忠, 马云, 方允樟 2010 浙江师范大学学报(自然科学版) 33 150Google Scholar

    Zhang J Q, Ye H Q, Zheng J L, Li T Y, Li W Z, Ma Y, Fang Y Z 2010 J. Zheiiang Normal Univ. (Nat. Sci.) 33 150Google Scholar

    [24]

    Makhnovskiy D P, Panina L V, Mapps D J 2001 J. Appl. Phys. 89 7224Google Scholar

    [25]

    Betancourt I 2011 Materials 4 37

    [26]

    Kurlyandskaya G V, Barandiarán J M, Vázquez M, Garcı́A D, Dmitrieva N V 2000 J. Magn. Magn. Mater. 215–216 740Google Scholar

    [27]

    Franco C S, Ribas G P, Bruno A C 2006 Sens. Actuators A: Phys. 132 85Google Scholar

    [28]

    Sommer R L, Chien C L 1995 J. Appl. Phys. Lett. 67 3346Google Scholar

    [29]

    Zhao C B, Pan L N, Ma X Q, Li J N, Liu Q F, Wang J B 2017 J. Magn. Magn. Mater. 444 198Google Scholar

  • [1] 张建强, 秦彦军, 方峥, 范晓珍, 马云, 李文忠, 杨慧雅, 邝富丽, 翟耀, 师应龙, 党文强, 叶慧群, 方允樟. 多场耦合Fe基合金巨磁阻抗效应调控机制.  , 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [2] 张树玲, 陈炜晔, 张勇. Co基金属纤维不对称巨磁阻抗效应.  , 2015, 64(16): 167501. doi: 10.7498/aps.64.167501
    [3] 李印峰, 封素芹, 王建勇. 交流电流对铁基纳米晶丝巨磁阻抗效应形貌的影响.  , 2011, 60(3): 037306. doi: 10.7498/aps.60.037306
    [4] 方允樟, 许启明, 郑金菊, 吕葆华, 潘日敏, 叶慧群, 郑建龙, 范晓珍. FeCo基磁芯螺线管巨磁阻抗效应与磁芯长度关系的研究.  , 2011, 60(12): 127501. doi: 10.7498/aps.60.127501
    [5] 张树玲, 孙剑飞, 邢大伟. 磁场退火对Co基熔体抽拉丝巨磁阻抗效应的影响.  , 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [6] 庞 浩, 李 根, 王赞基. 磁环中非晶丝的阻抗效应分析.  , 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [7] 潘海林, 程金科, 赵振杰, 何家康, 阮建中, 杨燮龙, 袁望治. LC共振型巨磁阻抗效应的研究.  , 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [8] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性.  , 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [9] 邵明辉, 陈庆永, 郑 鹉. TbDyFe薄膜对三明治膜巨磁阻抗效应的影响.  , 2006, 55(2): 811-815. doi: 10.7498/aps.55.811
    [10] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应.  , 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [11] 王文静, 袁慧敏, 姜 山, 萧淑琴, 颜世申. FeCuCrVSiB单层和多层膜的横向巨磁阻抗效应.  , 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [12] 王文静, 萧淑琴, 刘宜华, 陈卫平, 代由勇, 姜 山, 袁慧敏, 颜世申. 射频溅射功率对FeZrBCu软磁合金薄膜巨磁阻抗效应的影响.  , 2005, 54(4): 1821-1825. doi: 10.7498/aps.54.1821
    [13] 杨全民, 王玲玲, 孙德成. 介观结构对纳米晶软磁合金巨磁阻抗效应影响的理论分析.  , 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [14] 陈卫平, 萧淑琴, 王文静, 姜 山, 刘宜华. FeCuCrVSiB多层膜巨磁阻抗效应的研究.  , 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [15] 王艾玲, 刘江涛, 周云松, 姜宏伟, 郑 鹉. 各向异性场对三明治膜巨磁阻抗效应的影响.  , 2004, 53(3): 905-910. doi: 10.7498/aps.53.905
    [16] 刘江涛, 周云松, 王艾玲, 姜宏伟, 郑 鹉. 三明治结构与同轴电缆结构磁性材料巨磁阻抗效应的理论研究.  , 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [17] 钟智勇, 兰中文, 张怀武, 刘颖力, 王豪才. 铁磁/非铁磁/铁磁层状薄膜的巨磁阻抗效应的计算.  , 2001, 50(8): 1610-1615. doi: 10.7498/aps.50.1610
    [18] 何 峻, 敦慧群, 程利智, 沈保根, 何开元, 刘宜华. 电流退火铁基薄带巨磁阻抗效应的影响.  , 1999, 48(13): 159-163. doi: 10.7498/aps.48.159
    [19] 萧淑琴, 刘宜华, 颜世申, 代由勇, 张 林, 梅良模. FeCuNbSiB单层膜和三明治膜的磁特性与巨磁阻抗效应.  , 1999, 48(13): 187-192. doi: 10.7498/aps.48.187
    [20] 董正超. 磁三明治结构巨磁阻的量子解析理论.  , 1997, 46(9): 1801-1807. doi: 10.7498/aps.46.1801
计量
  • 文章访问数:  7138
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-07
  • 修回日期:  2019-01-04
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map