-
Ternary transition-metal chalcogenides are a series of compounds that possess both low-dimensional structures and correlated electrons, and display rich electronic ground states, depending on their different compositions. Among the chalcogen (S, Se, Te), Te has lower electronegativity and heavier atomic mass than S and Se. Thus, transition-metal tellurides take on distinct crystal structures, electronic structures and physical properties. In recent years, we have successively discovered novel superconductors Ta4Pd3Te16 and Ta3Pd3Te14, topological Dirac semimetals TaTMTe5 (TM = Pd, Pt, Ni),etc., further expanding the investigations of physical properties of the family of tellurides and laying a foundation for exploring their potential applications . The basis of further investigating and exploring the potential applications is the obtaining of the high-quality crystals with large dimensions. In this work, we first introduce the whole procedures of the single-crystal growth in growing the four ternary Pd-based tellurides (Ta4Pd3Te16, Ta3Pd3Te14, TaPdTe5, and Ta2Pd3Te5) by employing the self-flux method and chemical vapor transport method, and then give the chemical reaction equations in chemical vapor transport. The superconducting transition width of the Ta4Pd3Te16 crystal and Ta3Pd3Te14 crystal are as small as 0.57 K and 0.13 K, respectively, and by fitting the temperature-dependent resistivity of the topological insulator Ta2Pd3Te5, the band gap is derived to be 23.37 meV. Finally, we comparatively analyse the crystal-growth processes of the four ternary Pd-based tellurides by employing the flux method, which can provide the inspiration and reference for growing the crystals of other transition-metal tellurides by employing the similar methods.
-
Keywords:
- ternary Pd-based telluride /
- crystal growth /
- flux method /
- chemical vapor transport method
[1] Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029
Google Scholar
[2] Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568
Google Scholar
[3] Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895
Google Scholar
[4] Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020
Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734
Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882
Google Scholar
[7] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205
Google Scholar
[8] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1
Google Scholar
[9] Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105
Google Scholar
[10] Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512
Google Scholar
[11] Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719
Google Scholar
[12] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495
Google Scholar
[13] Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76
Google Scholar
[14] Pell M A, Ibers J A 1997 Chem. Ber. 130 1
Google Scholar
[15] Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929
Google Scholar
[16] Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1
Google Scholar
[17] Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702
Google Scholar
[18] Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031
Google Scholar
[19] Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507
Google Scholar
[20] Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508
Google Scholar
[21] Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987
Google Scholar
[22] Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284
Google Scholar
[23] Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1
Google Scholar
[24] Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141
Google Scholar
[25] Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150
Google Scholar
[26] Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782
Google Scholar
[27] Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319C
Google Scholar
[28] Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219
Google Scholar
[29] Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639
[30] Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7
[31] Tremel W 1993 Angew. Chem. Int. Ed. 32 1752
[32] Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506
Google Scholar
[33] Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408
Google Scholar
[34] Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705
Google Scholar
[35] Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055
Google Scholar
[36] Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780
Google Scholar
[37] Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461
Google Scholar
[38] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625
Google Scholar
[39] Kim H, Johns J E, Yoo Y 2020 Small 16 2002849
Google Scholar
[40] Brown B E 1966 Acta Crystallogr. 20 264
Google Scholar
-
图 1 晶体生长法略图和生长出的单晶照片 (a)助熔剂法; (b)化学气相输运法; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5
Figure 1. Schematic diagrams of the employed methods of crystal growth and the photographs of the as-grown crystals: (a) Flux method; (b)CVT method; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5.
表 1 四种单晶样品的元素组成
Table 1. Element composition of the four kinds of single crystals.
Sample Ta content/% Pd content/% Te content/% Ta4Pd3Te16 16.40 11.97 71.63 Ta3Pd3Te14 14.29 13.67 72.04 TaPdTe5 12.52 12.17 75.31 Ta2Pd3Te5 19.57 31.51 48.92 表 2 三元Pd基碲化物的晶体参数
Table 2. Crystal parameters of ternary Pd-based tellurides.
Compound Space group a/Å b/Å c/Å β/(°) IS/Å
(Calculated)IS/Å (XRD) Ref. Ta4Pd3Te16 I2/m 17.687(4) 3.735(1) 19.510(4) 110.42(1) 6.503(5) 6.529(6) [29] Ta3Pd3Te14 P21/m 14.088(2) 3.737(3) 20.560(2) 103.73(5) 6.397(1) 6.418(8) [30] TaPdTe5 Cmcm 3.693(4) 13.274(0) 15.602(0) — 6.637(0) 6.629(8) [24] Ta2Pd3Te5 Cmcm 13.989(3) 3.713(1) 18.630(4) — 6.994(7) 6.975(9) [31] -
[1] Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029
Google Scholar
[2] Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568
Google Scholar
[3] Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895
Google Scholar
[4] Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020
Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734
Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882
Google Scholar
[7] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205
Google Scholar
[8] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1
Google Scholar
[9] Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105
Google Scholar
[10] Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512
Google Scholar
[11] Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719
Google Scholar
[12] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495
Google Scholar
[13] Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76
Google Scholar
[14] Pell M A, Ibers J A 1997 Chem. Ber. 130 1
Google Scholar
[15] Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929
Google Scholar
[16] Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1
Google Scholar
[17] Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702
Google Scholar
[18] Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031
Google Scholar
[19] Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507
Google Scholar
[20] Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508
Google Scholar
[21] Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987
Google Scholar
[22] Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284
Google Scholar
[23] Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1
Google Scholar
[24] Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141
Google Scholar
[25] Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150
Google Scholar
[26] Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782
Google Scholar
[27] Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319C
Google Scholar
[28] Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219
Google Scholar
[29] Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639
[30] Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7
[31] Tremel W 1993 Angew. Chem. Int. Ed. 32 1752
[32] Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506
Google Scholar
[33] Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408
Google Scholar
[34] Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705
Google Scholar
[35] Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055
Google Scholar
[36] Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780
Google Scholar
[37] Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461
Google Scholar
[38] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625
Google Scholar
[39] Kim H, Johns J E, Yoo Y 2020 Small 16 2002849
Google Scholar
[40] Brown B E 1966 Acta Crystallogr. 20 264
Google Scholar
Catalog
Metrics
- Abstract views: 5491
- PDF Downloads: 147
- Cited By: 0