-
The phase-preserving amplitude regeneration scheme based on the bidirectional orthogonal-pumped semiconductor optical amplifier (SOA) is proposed in this work. Experimental investigation into the multiple four-wave mixing (FWM) process from the pump, the signal and their corresponding reflective fields is carried out in detail. The regeneration performance obtained from the product between co-propagating fields is also discussed, including its dependence on the signal launch power and the signal quality, to quantify the amplitude regeneration and the phase preserving behaviors. The amplitude distortion is suppressed by 2.2 dB experimentally, confirming the regeneration capability of the proposed scheme. Moreover, the regeneration performance is further investigated for multiple phase shift keying (MPSK) signals through the simulation. According to the numerical results, the operational parameters of the regenerator are the same for advanced modulation formats, proving the robust operation of the proposed bidirectional orthogonal-pumped SOA configuration.
-
Keywords:
- optical phase conjugation /
- semiconductor optical amplifier /
- four-wave mixing /
- all-optical regeneration
[1] Phillips I D, Tan M, Stephens M F C, McCarthy M E, Giacoumidis E, Sygletos S, Rosa P, Fabbri S, Le S T, Kanesan T, Turitsyn S K, Doran N J, Harper P, Ellis A D 2014Proceedings of the Optical Fiber Communication (OFC) Conference San Francisco, CA, USA, 9–13 March, 2014 pM3C.1
[2] Al-Khateeb M, Tan M, Zhang T, and Ellis A D 2019 IEEE Photonics Technol. Lett. 31 877Google Scholar
[3] Modiano E, Lin P J 2001 IEEE Commun. Mag. 39 124Google Scholar
[4] Rochette M, Fu, L, Ta'eed V, Moss D J, Eggleton B J 2006 IEEE J. Sel. Top. Quantum Electron. 12 736Google Scholar
[5] 陈新, 霍力, 娄采云, 王强, 余文科, 姜向宇, 赵之玺, 章恩耀 2016 65 054208Google Scholar
Chen X, Huo L, Lou C Y, Wang Q, Yu We K, Jiang X Y, Zhao Z X, Zhang E Y 2016 Acta Phys. Sin. 65 054208Google Scholar
[6] Wen F, Wu B J, Zhou X Y, Yuan H, Qiu K. 2014 Opt. Fiber Technol. 20 274Google Scholar
[7] Slavík R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690Google Scholar
[8] Roethlingshoefer T, Richter T, Schubert C, Onishchukov G, Schmauss B, Leuchs G 2014 Opt. Express 22 27077Google Scholar
[9] Wen F, Wu B J, Qiu K, Sygletos S 2019 Opt. Express 27 19940Google Scholar
[10] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆 2020 69 074202Google Scholar
Wang Y H, Wu B J, Guo B, Wen F, Qiu K 2020 Acta Phys. Sin. 69 074202Google Scholar
[11] Connelly M J, Krzczanowicz L, Morel P, Sharaiha A, Lelarge F, Brenot R, Joshi S, Barbet S 2016 Front. Optoelectron. 9 341Google Scholar
[12] Shao L, Sun F, Wen F, Yang Y, Yang F, Wu B J, Ling Y, Qiu K 2021 Proceedings of the Signal Processing in Photonic Communications Washington, DC United States, 26–29 July, 2021 pSpF2E.4
[13] Sobhanan A, Venkitesh D 2018 Opt. Express 26 22761Google Scholar
[14] Sun F, Wen F, Wu B, Ling Y, Qiu K 2022 Photonics 9 164Google Scholar
[15] Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J E, Helmerson K, Rolston S L, Phillips W D 1999 Nature 398 218Google Scholar
[16] McKinstrie C J, Harvey J D, Radic S, Raymer M G 2005 Opt. Express 13 9131Google Scholar
[17] Li Q, Davanço M, Srinivasan K 2016 Nat. Photonics 10 406Google Scholar
[18] Li K, Sun H, Foster A C 2017 Opt. Lett. 42 1488Google Scholar
[19] Lacava C, Ettabib M A, Bucio T D, Sharp G, Khokhar A Z, Jung Y, Sorel M, Gardes F, Richardson D J, Petropoulos P, Parmigiani F 2019 J. Lightwave Technol 37 1680Google Scholar
[20] Kyo I, Takaaki M, Tadashi S 1987 Appl. Phys. Lett. 51 1051Google Scholar
[21] Govind P A 1988 J. Opt. Soc. Am. B-Opt. Phys. 5 147Google Scholar
[22] Basil W H, Thomas L P 1973 J. Appl. Phys. 44 4113Google Scholar
-
图 3 不同驱动电流下(a)输入和(b)输出端口处的放大自发辐射光谱; (c) 驱动电流为100 mA时, 计算获得的反射率分布效果; (d)不同驱动电流下获得的工作波长范围1547.5—1549.5 nm内SOA反射率结果
Figure 3. Power spectral density (PSD) of amplified spontaneous emission (ASE) spectrum under different driving currents at (a) input port and (b) output port; (c) the reflectivity at driving current 100 mA; (d) reflectivity between 1547.5 nm and 1549.5 nm obtained under different driving currents.
图 4 四种 FWM 情况下的光谱 HF注入下的(a)实验光谱图及(b) H偏振与(c) V偏振的仿真光谱图; VB 注入下的(d)实验光谱图及(e) H偏振与(f) V偏振的仿真光谱图; VF 注入下的(g)实验光谱图及(h) H偏振与(i) V偏振的仿真光谱图; HB注入下的 (j)实验光谱图及(k) H偏振与(l) V偏振的仿真光谱图
Figure 4. Optical spectral results from the four FWM cases: (a) Experimental data and simulation results of (b) H and (c) V polarization for HF case; (d) experimental data and simulation results of (e) H and (f) V polarization for VB case; (g) experimental data and simulation results of (h) H and (i) V polarization for VF case; (j)experimental data and simulation results of (k) H and (l) V polarization for HB case.
图 6 (a)信号质量改善与输入信号OSNR的依赖关系; (b)最佳再生点处输入信号星座图(OSNRin=11.26 dB); (c)最佳再生点处共轭信号星座图
Figure 6. (a) The relationship between the signal-quality improvement and the OSNR of input signals; constellation diagrams of (b) the input signal and (c) the regenerated conjugated signal for the case of the input OSNR=11.26 dB.
表 1 不同偏振正交泵浦结构对应的四波混频相位失配分析
Table 1. Analysis of phase mismatch of four-wave mixing corresponding to different polarization orthogonal pump structures
两组实验
结构实验
设置形成折射率光栅
的光场工作泵浦
光场光栅波矢 共轭光波矢 相位失配 共轭光偏
振态端口信息 ${k_\Omega }/({\text{rad} } \cdot { {\text{m} }^{ {{ - 1} } } })$ ${k_{\text{c} } }/(\rm rad \cdot {m^{ - 1} })$ $\Delta k/{\text{(rad} } \cdot { {\text{m} }^{ {{ - 1} } } }{\text{)} }$ 一组 HF $ P_{\text{H}}^{\text{f}}{, }S_{\text{H}}^{\text{f}} $ $ P_{\text{H}}^{\text{f}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输出端 $ P_{\text{H}}^{\text{f}} $, $ S_{\text{H}}^{\text{f}} $ $ P_{\text{V}}^{{\text{bf}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输出端 VB $ P_{\text{H}}^{{\text{fb}}} $, $ S_{\text{H}}^{{\text{fb}}} $ $ P_{\text{V}}^{\text{b}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输入端 $ P_{\text{H}}^{{\text{fb}}} $, $ S_{\text{H}}^{{\text{fb}}} $ $ P_{\text{H}}^{{\text{fb}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输入端 二组 VF $ P_{\text{V}}^{\text{f}}{, }S_{\text{V}}^{\text{f}} $ $ P_{\text{V}}^{\text{f}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输出端 $ P_{\text{V}}^{\text{f}}{, }S_{\text{V}}^{\text{f}} $ $ P_{\text{H}}^{{\text{bf}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输出端 HB $ P_{\text{V}}^{{\text{fb}}}{, }S_{\text{V}}^{{\text{fb}}} $ $ P_{\text{H}}^{\text{b}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输入端 $ P_{\text{V}}^{{\text{fb}}}{, }S_{\text{V}}^{{\text{fb}}} $ $ P_{\text{V}}^{{\text{fb}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输入端 -
[1] Phillips I D, Tan M, Stephens M F C, McCarthy M E, Giacoumidis E, Sygletos S, Rosa P, Fabbri S, Le S T, Kanesan T, Turitsyn S K, Doran N J, Harper P, Ellis A D 2014Proceedings of the Optical Fiber Communication (OFC) Conference San Francisco, CA, USA, 9–13 March, 2014 pM3C.1
[2] Al-Khateeb M, Tan M, Zhang T, and Ellis A D 2019 IEEE Photonics Technol. Lett. 31 877Google Scholar
[3] Modiano E, Lin P J 2001 IEEE Commun. Mag. 39 124Google Scholar
[4] Rochette M, Fu, L, Ta'eed V, Moss D J, Eggleton B J 2006 IEEE J. Sel. Top. Quantum Electron. 12 736Google Scholar
[5] 陈新, 霍力, 娄采云, 王强, 余文科, 姜向宇, 赵之玺, 章恩耀 2016 65 054208Google Scholar
Chen X, Huo L, Lou C Y, Wang Q, Yu We K, Jiang X Y, Zhao Z X, Zhang E Y 2016 Acta Phys. Sin. 65 054208Google Scholar
[6] Wen F, Wu B J, Zhou X Y, Yuan H, Qiu K. 2014 Opt. Fiber Technol. 20 274Google Scholar
[7] Slavík R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690Google Scholar
[8] Roethlingshoefer T, Richter T, Schubert C, Onishchukov G, Schmauss B, Leuchs G 2014 Opt. Express 22 27077Google Scholar
[9] Wen F, Wu B J, Qiu K, Sygletos S 2019 Opt. Express 27 19940Google Scholar
[10] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆 2020 69 074202Google Scholar
Wang Y H, Wu B J, Guo B, Wen F, Qiu K 2020 Acta Phys. Sin. 69 074202Google Scholar
[11] Connelly M J, Krzczanowicz L, Morel P, Sharaiha A, Lelarge F, Brenot R, Joshi S, Barbet S 2016 Front. Optoelectron. 9 341Google Scholar
[12] Shao L, Sun F, Wen F, Yang Y, Yang F, Wu B J, Ling Y, Qiu K 2021 Proceedings of the Signal Processing in Photonic Communications Washington, DC United States, 26–29 July, 2021 pSpF2E.4
[13] Sobhanan A, Venkitesh D 2018 Opt. Express 26 22761Google Scholar
[14] Sun F, Wen F, Wu B, Ling Y, Qiu K 2022 Photonics 9 164Google Scholar
[15] Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J E, Helmerson K, Rolston S L, Phillips W D 1999 Nature 398 218Google Scholar
[16] McKinstrie C J, Harvey J D, Radic S, Raymer M G 2005 Opt. Express 13 9131Google Scholar
[17] Li Q, Davanço M, Srinivasan K 2016 Nat. Photonics 10 406Google Scholar
[18] Li K, Sun H, Foster A C 2017 Opt. Lett. 42 1488Google Scholar
[19] Lacava C, Ettabib M A, Bucio T D, Sharp G, Khokhar A Z, Jung Y, Sorel M, Gardes F, Richardson D J, Petropoulos P, Parmigiani F 2019 J. Lightwave Technol 37 1680Google Scholar
[20] Kyo I, Takaaki M, Tadashi S 1987 Appl. Phys. Lett. 51 1051Google Scholar
[21] Govind P A 1988 J. Opt. Soc. Am. B-Opt. Phys. 5 147Google Scholar
[22] Basil W H, Thomas L P 1973 J. Appl. Phys. 44 4113Google Scholar
Catalog
Metrics
- Abstract views: 3963
- PDF Downloads: 57
- Cited By: 0